Статья: UNIQUE SOLVABILITY OF IBVP FOR PSEUDO-SUBDIFFUSION EQUATION WITH HILFER FRACTIONAL DERIVATIVEON A METRIC GRAPH (2023)

Читать онлайн

In this paper, we investigate an initial boundary-value problem for a pseudo-subdiffusion equation involving the Hilfer time-fractional derivative on a metric graph. At the boundary vertices of the graph, we used the Dirichlet condition. At the branching points (inner vertices) of the graph, we use δ-type conditions. Such kind of conditions ensure a local flux conservation at the branching points and are also called Kirchhoff conditions. The uniqueness of a solution of the considered problem is shown using the so-called method of energy integrals. The existence of a regular solution to the considered problem is proved. The solution is constructed in the form of the Fourier series.

Ключевые фразы: hilfer operator, metric graph, method of variables separation, mittag-leffler function, a priori estimation, fractional derivatives and integrals
Автор (ы): SOBIROV Z. A.
Соавтор (ы): KHUJAKULOV J. R., Туремуратова Арухан Абатбаевна
Журнал: ЧЕЛЯБИНСКИЙ ФИЗИКО-МАТЕМАТИЧЕСКИЙ ЖУРНАЛ

Предпросмотр статьи

Идентификаторы и классификаторы

УДК
517.925. Системы и аналитическая теория обыкновенных дифференциальных уравнений
Для цитирования:
SOBIROV Z. A., KHUJAKULOV J. R., ТУРЕМУРАТОВА А. А. UNIQUE SOLVABILITY OF IBVP FOR PSEUDO-SUBDIFFUSION EQUATION WITH HILFER FRACTIONAL DERIVATIVEON A METRIC GRAPH // ЧЕЛЯБИНСКИЙ ФИЗИКО-МАТЕМАТИЧЕСКИЙ ЖУРНАЛ. 2023. Т. 8 № 3
Текстовый фрагмент статьи