Фотосенсорика на основе коллоидных квантовых точек (ККТ) является одним из наиболее динамично развивающихся направлений фотоэлектроники инфракрасного диапазона. Использование коллоидных квантовых точек существенно упрощает изготовление, снижает ограничения на шаг фоточувствительных элементов матриц и удешевляет технологию производства, что способствует широкому внедрению таких ИК-матриц в различные технические системы. Впервые представлен полный обзор архитектур, методов получения и основных свойств фотонных сенсоров на основе коллоидных квантовых точек соединений элементов II, IV и VI групп Периодической таблицы Д.И.Менделеева. Подробно рассмотрены особенности синтеза, роль лигандов и морфологии ККТ при создании фотосенсоров. Рассмотрены структурные схемы фоторезистивных, фотодиодных и фототранзисторных элементов на основе ККТ из HgTe, HgSe, PbS, PbSe, обладающих фоточувствительностью в различных спектральных диапазонах. Приведены основные параметры лучших образцов оптоэлектронных приборов на основе структур из ККТ. Проанализированы ключевые тенденции развития данного направления.
Библиография — 361 ссылка.
Идентификаторы и классификаторы
- SCI
- Нанотехнология
- Префикс DOI
- 10.59761/RCR5113
- eLIBRARY ID
- 65595456
Библиографическая запись
V.P.Ponomarenko, V.S.Popov, I.A.Shuklov, V.V.Ivanov, V.F.Razumov, “Photosensors based on colloidal quantum dots”, Russ. Chem. Rev., 2024, 93 (4), RCR5113, DOI: https://doi.org/10.59761/RCR5113
V.P.Ponomarenko, V.S.Popov, I.A.Shuklov, V.V.Ivanov, V.F.Razumov, “Photosensors based on colloidal quantum dots”, Russ. Chem. Rev., 2024, 93 (4), RCR5113, DOI: https://doi.org/10.59761/RCR5113
V.P.Ponomarenko, V.S.Popov, I.A.Shuklov, V.V.Ivanov, V.F.Razumov, “Photosensors based on colloidal quantum dots”, Russ. Chem. Rev., 2024, 93 (4), RCR5113, DOI: https://doi.org/10.59761/RCR5113
Основные характеристики
- Издательство
- "РНЦ "ПРИКЛАДНАЯ ХИМИЯ (ГИПХ)"
- Журнал
- УСПЕХИ ХИМИИ
Список литературы
- M.Ramamurthy, V.Lakshminarayanan. Human Vision and Perception. Handbook of Advanced Lighting Technology. (Cham: Springer, 2015);
https://doi.org/10.1007/978-3-319-00295-8_46-1 - V.Ponomarenko, A.Filachev. Infrared Techniques and Electro-Optics in Russia: A History 1946 – 2006. (Bellingham, Washington, USA: SPIE Press, 2007). 249 p.
- A.Richards. Alien Vision. Exploring the Electromagnetic Spectrum with Imaging Technology. (2nd Edn). (Bellingham, Washington USA: SPIE Press, 2011)
- A.Rogalski. Infrared Detectors. (2nd Edn). (Boca Raton, FL: CRC Press, 2010);
https://doi.org/10.1201/b10319 - R.D.Hudson. Infrared System Engineering. (New-York, London, Sydney, Toronto: Wiley-Interscience, 1969);
https://doi.org/10.1016/0022-2860(71)85028-7 - Electro-Optical Imaging: System Performance and Modeling. (Ed. L.M.Biberman). (Bellingham, Washington, USA: SPIE Press, 2000)
- A.Sadao. Properties of Semiconductor Alloys. Group-IV, III-V and II-VI Semiconductors. (Wiley Series in Materials for Electronics & Optoelectronics Applications Book, 2009)
- M.A.Kinch. State-of-the-Art Infrared Detector Technology. (Bellingham, Washington, USA: SPIE Press, 2014)
- N.Sclar. Infrared Phys., 16, 435 (1976);
https://doi.org/10.1016/0020-0891(76)90084-1 - D.N.B.Hall, D.Atkinson, K.Hodapp, R.Blank, M.Farris, S.Goebel, K.W.Hodapp, S.M.Jacobson, M.Loost, M.Zandian. Proc. SPIE, 9915, 9915OW (2016);
https://doi.org/10.1117/12.2234369 - M.Zandian, M.Farris, W.McLevige, D.Edwall, E.Arkun, E.Holland, J.E.Gunn, S.Smee, D.N.B.Hall, K.W.Hodapp, A.Shimono, N.Tamura, M.Carmody, J.Auyeung, J.W.Beletic. Proc. SPIE, 9915, 99150F-1 (2016);
https://doi.org/10.1117/12.2233664 - A.Rogalski. Adv. Opt. Photonics, 11 (2), 314 (2019);
https://doi.org/1364/AOP.11.000314 - V.P.Ponomarenko, V.S.Popov, S.V.Popov, E.L.Chepurnov. J. Commun. Technol. Electron., 65 (9), 1062 (2020);
https://doi.org/10.1134/S1064226920090090 - V.S.Popov, V.P.Ponomarenko, S.V.Popov. J. Commun. Technol. Electron., 67 (9), 1152 (2022);
https://doi.org/10.1134/S1064226922090133 - V.S.Popov, A.V.Egorov, V.P.Ponomarenko. J. Commun. Technol. Electron., 66 (9), 1092-1095 (2021);
https://doi.org/10.1134/S106422692109014X - D.Z.-Y.Ting, A.Soibel, L.Höglund, J.Nguyen, C.J.Hill, A.Khoshakhlagh, S.D.Gunapala. In Advances in Infrared Photodetectors. Vol. 84. Type-II Superlattice Infrared Detectors. (Elsevier, 2011)
- V.F.Razumov. Physics-Uspekhi, 59 (12), 1258 (2016);
https://doi.org/10.3367/UFNe.2016.03.037861 - S.B.Brichkin, V.F.Razumov. Russ. Chem. Rev., 85 (12), 1297 (2016);
https://doi.org/10.1070/RCR4656 - A.I.Ekimov, A.A.Onushchenko. Pi’sma Zh. Eksp. Teor. Fiz., 34 (6), 345 (1981)
- Al.L.Efros, A.L.Efros. Sov. Phys. Semicond., 16 (7), 772 (1982)
- L.E.Brus. J. Chem. Phys., 79 (11), 5566 (1983);
https://doi.org/10.1063/1.445676 - L.E.Brus. J. Chem. Phys., 80 (9), 4403 (1984);
https://doi.org/10.1063/1.447218 - R.Rossetti, S.Nakahara, L.E.Brus. J. Chem. Phys., 79 (2), 1086 (1983);
https://doi.org/10.1063/1.445834 - H.Weller, U.Koch, M.Gutierres, A.Henglein. Ber. Bunsenges. Phys. Chem., 88, 649 (1984); https//doi.org/10.1002/bbpc.19840880715
- A.Ekimov, A.L.Efros, A.Onushchenko. Solid State Commun., 56 (11), 921 (1985)
- A.J.Nozik, F.Williams, M.T.Nenadovic, T.Rajh, O.I.Micic. J. Phys. Chem., 89 (3), 397 (1985);
https://doi.org/10.1021/100249a004 - H.Weller, A.Fojtik, A.Henglein. Chem. Phys. Lett., 117 (5), 485 (1985);
https://doi.org/10.1016/0009-2614(85)80287-6 - L.Brus. J. Phys. Chem., 90 (12), 2555 (1986);
https://doi.org/10.1021/j100403a003 - M.A.Reed, J.N.Randall, R.J.Aggarwal, R.J.Matyi, T.M.Moore, A.E.Wetsel. Phys. Rev. Lett., 60 (6), 535 (1988);
https://doi.org/10.1103/PhysRevLett.60.595 - C.B.Murray, J.D.Norris, M.G.Bawendi. J. Am. Chem. Soc., 115 (19), 8706 (1993);
https://doi.org/10.1021/ja00072a025 - P.E.Malinowski, E.Georgitzikis, J.Maes, I.Vamvaka, F.Frazzica, J.Van Olmen, P.De Moor, P.Heremans, Z.Hens, D.Cheyns. Sensors, 17, 2867 (2017);
https://doi.org/10.3390/s17122867 - C.Gréboval, D.Darson, V.Parahyba, R.Alchaar, C.Abadie, V.Noguier, S.Ferré, E.Izquierdo, A.Khalili, Y. Prado, P.Potet, E.Lhuillier. Nanoscale, 14 (26), 2022;
https://doi.org/10.1039/D2NR01313D - E.J.D.Klem, C.W.Gregory, D.S.Temple, J.S.Lewis. Proc. SPIE, 9555, 955505 (2015);
https://doi.org/10.1117/12.2190372.4519371145001 - J.Lee, E.Georgitzikis, Y.Li, Z.Lin, J.Park, I.Lieberman, D.Cheyns, M.Jayapala, A.Lambrechts, S.Thijs, R.Stahl, P.E.Malinowski. 2020 IEEE International Electron Devices Meeting (IEDM). (San Francisco, CA, 2020). P. 16.5.11;
https://doi.org/10.1109/IEDM13553.2020.9372018 - J.Liu, P.Liu, D.Chen, T.Shi, X.Qu, L.Chen, T.Wu, J.Ke, K.Xiong, M.Li, H.Song, W.Wei, J.Cao, J.Zhang, L.Gao, J.Tang. Nat. Electron., 5 (7), 443 (2022);
https://doi.org/10.1038/s41928-022-00779-x - C.Gregory, J.A.Hilton, K.Violette, S.Shefte, C.Procida, T.Tessema, M.Bond, E.J.D.Klem. Proc. SPIE, 12107, 1210705 (2022);
https://doi.org/10.1117/12.2618320 - M.Liu, N.Yazdani, M.Yarema, M.Jansen, V.Wood, E.H.Sargent. Nat. Electron., 4, 548 (2021);
https://doi.org/10.1038/s41928-021-00632-7 - F.P.G.de Arquer, D.V.Talapin, V.I.Klimov, Y.Arakawa, M.Bayer, E.H.Sargent. Science, 373(6555), (2021);
https://doi.org/10.1126/science.aaz8541 - Z.Mamiyev, N.O.Balayeva. Mater. Today Sustainanable, 21, 100305 (2023); https//doi.org/10.1016/j.mtsust.2022.100305
- W.M.M.Lin, M.Yarema, M.Liu, E.Sargent, V.Wood. Chimia, 75 (5), 398 (2021);
https://doi.org/10.2533/chimia.2021.398 - V.Pejovic, E.Georgitzikis, J.Lee, I.Lieberman, D.Cheyns, P.Heremans, P.E.Malinowski. IEEE Trans. Electron Devices, 69, 2840 (2022);
https://doi.org/10.1109/TED.2021.3133191 - M.C.Gupta, J.T.Harrison, M.T.Islam. Mater. Adv., 2, 3133 (2021);
https://doi.org/10.1039/D0MA00965B - H.Wu, Z.Ning. J. Appl. Phys., 133, (2023);
https://doi.org/10.1063/5.0133809 - V.P.Ponomarenko, V.S.Popov, S.V.Popov. J. Commun. Technol. Electron., 67, (suppl. 1) S1 (2022);
https://doi.org/10.1134/S106422692213006X - Patent US 4039833 (1977)
- L.Shkedy, T.Markovitz, Z.Calahorra, I.Hirsh, I.Shtrichman. Opt. Eng., 50 (6), 061008 (2011);
https://doi.org/10.1117/1.3572163 - G.Gershon, A.Albo, M.Eylon, O.Cohen, Z.Calahorra, M.Brumer, M.Nitzani, E.Avnon, Y.Aghion, I. Kogan, E.Ilan, L.Shkedy. Proc. SPIE, 8704, 870438 (2013);
https://doi.org/10.1117/12.2015583 - W.Vereecken, U.Van Bogget, T.Colin, R.-M.Vinella, J.Das, P.Merken, J.Vermeiren. Proc. SPIE, 8704, 870404 (2013);
https://doi.org/10.1117/12.2019030 - V.M.Bazovkin, V.S.Varavin, V.V.Vasil’ev, A.V.Glukhov, D.V.Gorshkov, S.A.Dvoretsky, A.P.Kovchavtsev, Yu.S.Makarov, D.V.Marin, I.V.Mzhelsky, V.G.Polovinkin, V.G.Remesnik, I.V.Sabinina, Yu.G.Sidorov, G.Yu.Sidorov, A.S.Stroganov, A.V.Tsarenko, M.V.Yakushev, A.V.Latyshev. J. Commun. Technol. Electron., 64 (9), 1011 (2019);
https://doi.org/10.1134/S1064226919090043 - Q.Cai, H.You, H.Guo, J.Wang, B.Liu, Z.Xie, D.Chen, H.Lu, Y.Zheng, R.Zhang. Light Sci. Appl., 10, 94 (2021);
https://doi.org/10.1038/s41377-021-00527-4 - R.Rehm, R.Driad, L.Kirste, S.Leone, T.Passow, F.Rutz, L.Watschke, A.Zibold. Phys. Status Solidi A, 217, 1900769 (2020);
https://doi.org/10.1002/pssa.201900769 - J.Beck, C.Wan, M.Kinch, J.Robinson, P.Mitra, R.Scritchfield, F.Ma, J.Campbell. Proc. SPIE, 5564, 44 (2004);
https://doi.org/10.1117/12.565142 - J.Beck, C.Wan, M.Kinch, J.Robinson, P.Mitra, R.Scritchfield, F.Ma, J.Campbell. J. Electron. Mater., 35 (6), 1166 (2006);
https://doi.org/10.1007/s11664-006-0237-3 - X.Sun, J.B.Abshire, J.D.Beck, P.R.Mitra, K.Reiff, G.Yang. Opt. Express, 25 (14), 16589 (2017);
https://doi.org/10.1364/OE.25.016589 - M.K.Bhowmik, K.Saha, S.Majumder, G.Majumder, A.Saha, A.N.Sarma, D.Bhattacharjee, D.K.Basu, M.Nasipuri. In Reviews, Refinements and New Ideas in Face Recognition. (Ed. Dr. P.Corcoran). (InTech, 2011). Ch. 6, P. 120;
https://doi.org/10.5772/18986 - Modern Developments in Vacuum Electron Sources (Topics in Applied Physics 135). (Eds G.Gaertner, W.Knapp, R.G.Forbes). (Springer, 2020)
- K.Nakamura, Y.Hamana, Y.Ishigami, T.Matsui. Nucl. Instr. Meth. Phys. Res. A, 623, 276 (2010);
https://doi.org/10.1016/j.nima.2010.02.220 - R.Voilmerhausen, T.Maurer. Proc. SPIE, 5076, 60 (2003);
https://doi.org/10.1117/12.487189 - C.Bellisario, P.Simoneau, P.Keckhut, A.Hauchecorne. J. Space Weather Space Clim., 10, 21 (2020);
https://doi.org/10.1051/swsc/2020017 - M.L.Vatsia, U.K.Stich, D.Dunlap. Night-Sky Radiant Sterance from 450 to 2000 Nanometers. Research and Development. (Technical Report ECOM-7022, U.S.Army Electronics Command, fort Monmouth, NJ, 1972)
- N.I.Gusarova, N.F.Koshchavtsev, S.V.Popov. J. Commun. Technol. Electron., 61 (10), 1211 (2016);
https://doi.org/10.1134/S1064226916100144 - T.Martin, P.Dixon, M.-A.Gagliardi, N.Masaun. Proc. SPIE, 5726, 85 (2005);
https://doi.org/10.1117/12.596409 - M.D.Enriquez, M.A.Blessinger, J.V.Groppe, T.M.Sudol, J.Battaglia, J.Passe, M.Stern, B.M.Onat. Proc. SPIE, 6940, 69400O (2008);
https://doi.org/10.1117/12.778310 - S.Manda, R.Matsumoto, S.Saito, S.Maruyama, H.Minari, T.Hirano, T.Takachi, N.Fujii, Y.Yamamoto, Y.Zaizen, T.Hirano, H.Iwamoto. 2019 IEEE International Electron Devices Meeting (IEDM). (San Francisco, CA, 2019). P. 16.7.1;
https://doi.org/10.1109/IEDM19573.2019.8993432 - S.Lhostis, A.Farcy, E.Deloffre, F.Lorut, S.Mermoz, Y.Henrion, L.Berthier, F.Bailly, D.Scevola, F.Guyader, F.Gigon, C.Besset, S.Pellissier, L.Gay, N.Hotellier, M.Arnoux, A.-L. Le Berrigo, S.Moreau, V.Balan, F.Fournel, A.Jouve, S.Chéramy, B.Rebhan, G.A.Maier, L.Chitu. 2016 IEEE 66th Electronic Components and Technology Conference (ECTC). (Las Vegas, NV, 2016). P. 869;
https://doi.org/10.1109/ECTC.2016.202 - Y.Kagawa, S.Hida, Y.Kobayashi, K.Takahashi, S.Miyanomae, M.Kawamura, H.Kawashima, H.Yamagishi, T.Hirano, K.Tatani, H.Nakayama, K.Ohno, H.Iwamoto, S.Kadomura. 2 2019 Electron Devices Technology and Manufacturing Conference (EDTM). (Singapore, 2019). P. 297;
https://doi.org/10.1109/EDTM.2019.8731186 - J.Jourdon, S.Lhostis, S.Moreau, J.Chossat, M.Arnoux, C.Sart, Y.Henrion, P.Lamontagne, L.Arnaud, N. Bresson, V.Balan, C.Euvrard, Y.Exbrayat, D.Scevola, E.Deloffre, S.Mermoz, A.Martin, H.Bilgen, F.Andre, C.Charles, D.Bouchu, A.Farcy, S.Guillaumet, A.Jouve, H.Fremont, S.Cheramy. 2018 IEEE International Electron Devices Meeting (IEDM). (San Francisco, CA, 2018). P. 7.3.1;
https://doi.org/10.1109/IEDM.2018.8614570 - S.Moreau, J.Jourdon, S.Lhostis, D.Bouchu, B.Ayoub, L.Arnaud, H.Fremon. ECS J. Solid State Sci. Technol., 11 (2), 024001 (2022);
https://doi.org/10.1149/2162-8777/ac4ffe - R.Saran, R.J.Curry. Nat. Photon., 10, 81 (2016);
https://doi.org/10.1038/NPHOTON.2015.280 - X.Tang, M.M.Ackerman, P.Guyot-Sionnest. ACS Nano, 12, 7362 (2018); doi: 10.1021/acsnano.8b03871
- P.Guyot-Sionnest, M.M.Ackerman, X.Tang. J. Chem. Phys., 151, 060901 (2019);
https://doi.org/10.1063/1.5115501 - T.Nakotte, H.Luo, J.Pietryga. Nanomaterials, 10, 172 (2020); doi:10.3390/nano10010172
- P.E.Malinowski, E.Georgitzikis, J.Maes, I.Vamvaka, F.Frazzica, J.Van Olmen, P.De Moor, P.Heremans, Z.Hens, D.Cheyns. Sensors, 17, 2867 (2017);
https://doi.org/10.3390/s17122867 - T.Milenkovich, I.A.Shuklov, A.A.Mardini, V.S.Popov. Mater. Proc., 14 (1), 21 (2023);
https://doi.org/10.3390/IOCN2023-14500 - E.J.D.Klem, J.Lewis, C.Gregory, G.Cunningham, D.Temple. Proc. SPIE, 8353, 835337 (2012);
https://doi.org/10.1117/12.919308 - S.Hinds, E.Klem, C.Gregory, A.Hilton, G.Hames, K.Violette. Proc. SPIE, 11407, 1140707 (2020);
https://doi.org/10.1117/12.2559115 - J.Lee, E.Georgitzikis, Y.Li, Z.Lin, J.Park, I.Lieberman, D.Cheyns, M.Jayapala, A.Lambrechts, S.Thijs, R.Stahl, P.E.Malinowski. 2020 IEEE International Electron Devices Meeting (IEDM). (San Francisco, CA, 2020). P. 16.5.11;
https://doi.org/10.1109/IEDM13553.2020.9372018 - J.S.Steckel, E.Josse, A.G.Pattantyus-Abraham, M.Bidaud, B.Mortini, H.Bilgen, O.Arnaud, S.Allegret-Maret, F.Saguin, L.Mazet, S.Lhostis, T.Berger, K.Haxaire, L.L.Chapelon, L.Parmigiani, P.Gouraud, M.Brihoum, P.Bar, M.Guillermet, S.Favreau, R.Duru, J.Fantuz, S.Ricq, D.Ney, I.Hammad, D.Roy, A.Arnaud , B.Vianne, G.Nayak, N.Virollet, V.Farys, P.Malinge, A.Tournier, F.Lalanne, A.Crocherie, J.Galvier, S.Rabary, O.Noblanc, H.Wehbe-Alause, S.Acharya, A.Singh, J.Meitzner, D.Aher, H.Yang, J.Romero, B.Chen, C.Hsu, K.C.Cheng, Y.Chang, M. Sarmiento, C.Grange, E.Mazaleyrat, K.Rochereau. 2021 IEEE International Electron Devices Meeting (IEDM). (San Francisco, CA, 2021). P. 23.2.1;
https://doi.org/10.1109/IEDM19574.2021.9720560 - I.A.Shuklov, V.F.Toknova, D.V.Dyomkin, G.I.Lapushkin, L.M.Nikolenko, A.A.Lizunova, S.B.Brichkin, V.N.Vasilets, V.F.Razumov. High Energy Chemistry, 54 (3), 183 (2020);
https://doi.org/10.1134/S0018143920030133 - S.A.McDonald, P.W.Cyr, L.Levina, E.H.Sargent. Appl. Phys. Lett., 85 (11), 2089 (2004);
https://doi.org/10.1063/1.1792380 - S.A.McDonald, G.Konstantatos, S.Zhang, P.W.Cyr, E.J.D.Klem, L.Levina, E.H.Sargent. Nat. Mater., 4, 138 (2005);
https://doi.org/10.1038/nmat1299 - T.Rauch, M.Boberl, S.F.Tedde, J.Furst, M.V.Kovalenko, G.Hesser, U.Lemmer, W.Heiss, O.Hayden. Nat. Photon., 3, 332 (2009);
https://doi.org/10.1038/nphoton.2009.72 - E.J.Klem, J.S.Lewis, D.Temple. Proc. SPIE, 7660, 76602E (2010);
https://doi.org/10.1117/12.849708 - E.J.D.Klem, C.W.Gregory, G.B.Cunningham, S.Hall, D.S.Temple, J.S.Lewis. Appl. Phys. Lett., 100, 173109 (2012);
https://doi.org/10.1063/1.4707377 - E.Klem, J.Lewis, C.Gregory, G.Cunningham, D.Temple, A.D’Souza, E.Robinson, P.S.Wijewarnasuriya, N.Dhar. Proc. SPIE, 8868, 886806 (2013);
https://doi.org/10.1117/12.2026972 - E.Klem, J.Lewis, C.Gregory, G.Cunningham, D.Temple, A.D’Souza, E.Robinson, P.S.Wijewarnasuriya, N.Dhar. Proc SPIE, 8704, 870436 (2013);
https://doi.org/10.1117/12.2019521 - E.J.D.Klem, J.Lewis, C.Gregory, D.Temple, P.S.Wijewarnasuriy, N.Dhar. Proc. SPIE, 9070, 907039 (2014);
https://doi.org/10.1117/12.2054215 - E.J.D.Klem, C.Gregory, D.Temple, J.Lewis. Proc. SPIE, 9451, 945104-1 (2015);
https://doi.org/10.1117/12.2178532 - P.Palomaki, S.Keuleyan. IEEE Spectrum, 57 (3), 24 (2020); doi: 10.1109/mspec.2020.9014456
- V.Pejovic, J.Lee, E.Georgitzikis, Y.Li, J.-H.Kim, I.Lieberman, P.E.Malinovski, P.Heremans, D.Cheyns. IEEE Electron Device Lett., 42 (8), 1196 (2021);
https://doi.org/10.1109/LED.2021.3093081 - E.Georgitzikis, P.E.Malinowski, J.Maes, A.Hadipour, Z.Hens, P.Heremans, D.Cheyns. Adv. Funct. Mater., 28, 1804502 (2018);
https://doi.org/10.1002/adfm.201804502 - E.Georgitzikis, P.E.Malinowski, Y.Li, J.Lee, A.Süss, F.Frazzica, J.Maes, S.Gielen, F.Verstraeten, P.Boulenc, M.Mao, S.Guerrieri, W.Maes, Z.Hens, P.Heremans, D.Cheyns. 2019 International Image Sensor Workshop (Proc. IISW), R43 2019
- E.Georgitzikis, P.E.Malinowski, Y.Li, J.Maes, L.M.Hagelsieb, S.Guerrieri, Z.Hens, P.Heremans, D.Cheyns. IEEE Sensors J., 20 (13), 6841 (2020);
https://doi.org/10.1109/JSEN.2019.2933741 - I.G.Neizvestnyi, A.E.Klimov, V.N.Shumsky. Physics – Uspekhi, 58 (10), 952 (2015);
https://doi.org/10.3367/UFNr.0185.201510b.1031 - Y.Luo, Y.Tan, C.Bi, S.Zhang, X.Xue, M.Chen, Q.Hao, Y.Liu, X.Tang. APL Photon, 8, 056109 (2023);
https://doi.org/10.1063/5.0145374 - I.M.E.Sachinthanie, M.M.I.H.K.Madigasekara, H.C.S.Perera. Ceylon J. Sci., 52 (2) 113 (2023);
https://doi.org/10.4038/cjs.v52i2.8154 - H.Song, Y.Tischenko, D.Wasserman, K.S.Jeong. Opt. Mater. Express, 13 (5/1), 1328 (2023);
https://doi.org/10.1364/OME.489877 - T.Nakotte, S.G.Munyan, J.W.Murphy, S.A.Hawks, S.Y.Kang, J.Han, A.M.Hiszpanski. J. Mater. Chem. C, 10, 790 (2022);
https://doi.org/10.1039/D1TC05359K - C.Gréboval, A.Chu, N.Goubet, C.Livache, S.Ithurria, E.Lhuillier. Chem. Rev., 121, 3627 (2021);
https://doi.org/10.1021/acs.chemrev.0c01120 - A.Chu, B.Martinez, S.Ferré, V.Noguier, C.Gréboval, C.Livache, J.Qu, Y.Prado, N.Casaretto, N.Goubet, H.Cruguel, L.Dudy, M.G.Silly, G.Vincent, E.Lhuillier. ACS Appl. Mater. Interfaces, 11, 33116 (2019);
https://doi.org/10.1021/acsami.9b09954 - A.Chatterjee, N.B.Pendyala, A.Jagtap, K.S.R.K.Rao. e-Journal Surface Sci. Nanotechnol., 17, 95 (2019);
https://doi.org/10.1380/ejssnt.2019.95 - V.S.Popov, V.P.Ponomarenko, S.V.Popov. RFBR J., 1 (117), 73 (2023);
https://doi.org/10.22204/2410-4639-2023-117-01-73-88 - I.A.Shuklov, D.V.Dyomkin, V.A.Konavicheva, V.S.Popov, V.F.Razumov. J. Commun. Technol. Electron., 68 (S2), S184–S189 (2023);
https://doi.org/10.1134/S1064226923140152 - S.Goossens, G.Navickaite, C.Monasterio, S.Gupta, J.J.Piqueras, R.Pérez, G.Burwell, I.Nikitskiy, T.Lasanta, T.Galán, E.Puma, A.Centeno, A.Pesquera, A.Zurutuza, G.Konstantatos, F.Koppens. Nat. Photon., 11, 366 (2017);
https://doi.org/10.1038/NPHOTON.2017.75 - O.Madelung. Semiconductors: Data Handbook. (3rd Edn). (Berlin, Heidelberg: Springer, 2004);
https://doi.org/10.1007/978-3-642-18865-7 - I.M.Tsidilkovski. Gapless Semiconductors – a New Class of Materials. (Berlin: Akademie-Verlag, 1988);
https://doi.org/10.1515/9783112643143 - J.Ruan, S.-K.Jian, H.Yao, H.Zhang, S.-C.Zhang, D.Xing. Nat. Commun., 7, 11136 (2016);
https://doi.org/10.1038/ncomms11136 - Y.Kayanuma. Phys. Rev., 38 (14), 9797 (1988);
https://doi.org/10.1103/PhysRevB.38.9797 - Y.Kayanuma, H.Momiji. Phys. Rev., 41 (14), 10261 (1990);
https://doi.org/10.1103/PhysRevB.41.10261 - Y.Wang, N.Herron. J. Phys. Chem., 95 (2), 525 (1991);
https://doi.org/10.1021/j100155a009 - A.I.Ekimov, F.Hache, M.C.Schanne-Klein, D.Ricard, C.Flytzanis, I.A.Kudryavtsev, T.V.Yazeva, A.V.Rodina, Al.A.Efros. J. Opt. Soc. Am. B, 10(1), 100 (1993);
https://doi.org/10.1364/JOSAB.10.000100 - S.V.Gaponenko. Optical Properties of Semiconductor Nanocrystals. (Cambridge, 1998;
https://doi.org/10.1017/CB09780511524141 - Colloidal Quantum Dot Optoelectronics and Photovoltaics. (Eds G.Konstantatos, E.H.Sargent). (Cambridge: Cambridge University Press, 2013)
- S.V.Karpov, S.V.Mikushev. Phys. Solid State, 52 (8), 1750 (2010);
https://doi.org/10.1134/S1063783410080287 - C.M.Evans, L.C.Cass, K.E.Knowles, D.B.Tice, R.P.H.Chang, E.A.Weiss. J. Coord. Chem., 65:13, 2391 (2012);
https://doi.org/10.1080/00958972.2012.695019 - A.V.Baranov, E.V.Ushakova, V.V.Golubkov, A.P.Litvin, P.S.Parfenov, A.V.Fedorov, K.Berwick. Langmuir, 2014;
https://doi.org/10.1021/la503913z - X.Tang, X.Tang, K.W.C.Lai. ACS Photonics, 3 (12), 2396 (2016);
https://doi.org/10.1021/acsphotonics.6b00620 - Y.Wang, A.Suna, W.Mahler, R.Kasowski. J. Chem. Phys., 87, 7315 (1987);
https://doi.org/10.1063/1.453325 - I.Kang, F.W.Wise. J. Opt. Soc. Am. B, 14 (7), 1632 (1997);
https://doi.org/10.1364/JOSAB.14.001632 - A.D.Andreev, A.A.Lipovskii. Phys. Rev. B, 59 (23), 15402 (1999);
https://doi.org/10.1103/PhysRevB.59.15402 - C.B.Murray, S.Sun, W.Gaschler, H.Doyle, T.A.Betley, C.R.Kagan. IBM J. Res. Dev., 45 (1), 47 (2001);
https://doi.org/10.1147/rd.451.0047 - G.Allan, C.Delerue. Phys. Rev. B, 70, 245321 (2004);
https://doi.org/10.1103/PhysRevB.70.245321 - J.M.Harbold, H.Du, T.D.Krauss, K.-S.Cho, C.B.Murray, F.W.Wise. Phys. Rev. B, 72, 195312 (2005);
https://doi.org/10.1103/PhysRevB.72.195312 - J.M.An, A.Franceschetti, S.V.Dudiy, A.Zunger. Nano Lett., 6 (12), 2728 (2006);
https://doi.org/10.1021/nl061684x - G.Nootz, L.A.Padilha, P.D.Olszak, S.Webster, D.J.Hagan, E.W.Van Stryland, L.Levina, V.Sukhovatkin, L.Brzozowski, E.H.Sargent. Nano Lett., 10, 3577 (2010);
https://doi.org/10.1021/nl101867 - A.N.Poddubny, M.O.Nestoklon, S.V.Goupalov. Phys. Rev. B, 86, 035324 (2012);
https://doi.org/10.1103/PhysRevB.86.035324 - V.L.Ermolaev. Opt. Spectrosc., 125, 256 (2018);
https://doi.org/10.1134/S0030400X18080052 - A.Rogalski. Infrared and Terahertz Detectors. (3rd Edn). (CRC Press, 2019);
https://doi.org/10.1201/b21951 - L.D.Landau, E.M.Lifshitz. Electrodynamics of Continuous Media. (Oxford: Pergamon Press, 1984);
https://doi.org/10.1016/8978-0-08-030275-1.50007-2 - K.V.Reich, B.I.Shklovskii. Appl. Phys. Lett., 108, 113104 (2016);
https://doi.org/10.1063/1.4944407127 - K.V.Reich. Phys. Usp., 63, 994 (2020);
https://doi.org/10.3367/UFNr.2019.08.038649 - B.I.Shklovskii, A.L.Efros. Electronic Properties of Doped Semiconductors. (Berlin, Heidelberg: Springer-Verlag, 1984);
https://doi.org/10.1007/978-3-662-02405-4 - H.Liu, A.Pourret, P.Guyot-Sionnest. ACS Nano, 4 (9), 5211 (2010);
https://doi.org/10.1021/nn101376u - N.Ray. Charge Transport in Nanopatterned PbS Quantum Dot Arrays. PhD Thesis, Massachusetts Institute of Technology, 2014
- A.Zabet-Khosousi, Al-Amin Dhirani. Chem. Rev., 108, 4072 (2008);
https://doi.org/10.1021/cr0680134 - D.V.Talapin, J.-S.Lee, M.V.Kovalenko, E.V.Shevchenko. Chem. Rev., 110, 389 (2010);
https://doi.org/10.1021/cr900137k - A.A.Chistyakov, M.A.Zvaigzne, V.R.Nikitenko, A.R.Tameev, I.L.Martynov, O.V.Prezhdo. J. Phys. Chem. Lett., 8, 4129 (2017);
https://doi.org/10.1021/acs.jpclett.7b00671 - S.D.Baranovskii. Phys. Status Solidi B, 251 (3), 487 (2014);
https://doi.org/10.1002/pssb.201350339 - Z.Zhang, J.Sung, D.T.W.Toolan, S.Han, R.Pandya, M.P.Weir, J.Xiao, S.Dowland, M.Liu, A.J.Ryan, R.A.L.Jones, S.Huang, A.Rao. Nat. Mater., 21, 533 (2022);
https://doi.org/10.1038/s41563-022-01204-6 - C.L.Tan, H.Mohseni. Nanophotonics, 7 (1), 169 (2018);
https://doi.org/10.1515/nanoph-2017-0061 - C.Livache, B.Martinez, N.Goubet, J.Ramade, E.Lhuillier. Front. Chem., 6, 575 (2018);
https://doi.org/10.3389/fchem.2018.00575 - M.C.Gupta, J.T.Harrison, Md Toriqul Islam. Mater. Adv., 2, 3133 (2021);
https://doi.org/10.1039/d0ma00965b - B.Martinez, C.Livache, L.D.M.Notemgnou, N.Goubet, S.Keuleyan, H.Cruguel, S.Ithurria, H.Aubin, A.Ouerghi, B.Doudin, E.Lacaze, B.Dubertret, M.G.Silly, Ricardo Psm Lobo, J.F.Dayen, E.Lhuillier. ACS Appl. Mater. Interfaces, 9 (41), 36173 (2017);
https://doi.org/10.1021/acsami.7b10665 - V.Rinnerbauer, K.Hingerl. Appl. Phys. Lett., 89, 193114 (2006);
https://doi.org/10.1063/1.2387110 - V.A.Harutyunyan, D.B.Hayrapetyan, E.M.Kazaryan. Phys. Solid State, 62 (8), 1305 (2020);
https://doi.org/10.1134/S106378342008003X - A.V.Baranov, E.V.Ushakova, V.V.Golubkov, A.P.Litvin, P.S.Parfenov, A.V.Fedorov, K.Berwick. Langmuir, 31, 506 (2015);
https://doi.org/10.1021/la503913z - O.E.Semonin, J.M.Luther, M.C.Beard. Mater. Today, 15 (11), 508 (2012);
https://doi.org/10.1016/S1369-7021(12)70220-1 - A.Jagtap, C.Livache, B.Martinez, J.Qu, A.C.Hu, C.H.Gréboval, N.Goubet, E.Lhuillier. Opt. Mater. Express, 8 (5), 1174 (2018);
https://doi.org/10.1364/OME.8.001174 - X.Tang, G.Wu, K.W.C.Lai. 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO). (Pittsburgh, PA, 2017), P. 641;
https://doi.org/10.1109/NANO.2017.8117308 - S.Guohua, P.Guyot-Sionnest. J. Phys. Chem. C, 120 (21), 11744 (2016);
https://doi.org/10.1021/acs.jpcc.6b04014 - J.Qiu, B.Weng, L.L.McDowell, Z.Shi. RSC Adv., 9 (72), 42516 (2019);
https://doi.org/10.1039/c9ra07664f - W.D.Lawson, F.A.Smith, A.S.Young. J. Electrochem. Soc., 107, 206 (1960);
https://doi.org/10.1149/1.2427652 - N.F.Borrelli, D.W.Smith. J. Non-Crystal. Solids, 180, 25 (1994);
https://doi.org/10.1016/0022-3093(94)90393-X - C.B.Murray, S.Sun, W.Gaschler, H.Doyle, T.A.Betley, C.R.Kagan. IBM J. Res. Dev., 45 (1), 47 (2001);
https://doi.org/10.1147/rd.451.0047 - M.A.Hines, G.D.Scholes. Adv. Mater., 15 (21), 1844 (2003);
https://doi.org/10.1002/adma.200305395 - C.Hu, A.Gassenq, Y.Justo, K.Devloo-Casier, H.Chen, C.Detavernier, Z.Hens, R.Roelkens. Appl. Phys. Lett., 105, 171110 (2014);
https://doi.org/10.1063/1.4900930 - F.P.G.deArquer, T.Lasanta, M.Bernechea, G.Konstantatos. Small, 11 (22), 2636 (2015);
https://doi.org/10.1002/smll.201403359 - N.Killilea, M.Wu, M.Sytnyk, A.A.Y.Amin, O.Mashkov, E.Spiecker, W.Heiss. Adv. Funct. Mater., 1807964 (2019);
https://doi.org/10.1002/adfm.201807964 - G.Konstantatos, I.Howard, A.Fischer, S.Hoogland, J.Clifford, E.Klem, L.Levina, E.H.Sargent. Nature, 442, 180 (2006);
https://doi.org/10.1038/nature04855 - G.Konstantatos, J.Clifford, L.Levina, E.H.Sargent. Nat. Photon., 1 (9), 531 (2007);
https://doi.org/10.1038/nphoton.2007.147 - S.Yakunin, D.N.Dirin, L.Protesescu, M.Sytnyk, S.Tollabimazraehno, M.Humer, F.Hackl, T.Fromherz, M.I.Bodnarchuk, M.V.Kovalenko, W.Heiss. ACS Nano, 3, 12883 (2014);
https://doi.org/10.1021/nn5067478 - J.He, M.Luo, L.Hu, Y.Zhou, S.Jiang, H.Song, R.Ye, J.Chen, L.Gao, J.Tang. J. Alloys Compd., 596, 73 (2014);
https://doi.org/10.1016/j.jallcom.2014.01.194 - C.Li, T.Bai, F.Li, L.Wang, X.Wu, L.Yuan, Z.Shi, S.Feng. CrystEngComm, 15, 597 (2013);
https://doi.org/10.1039/c2ce26516h - A.Sashchiuk, D.Yanover, A.Rubin-Brusilovski, G.I.Maikov, R.K.Capek, R.Vaxenburg, J.Tilchin, G.Zaiats, E.Lifshitz. Nanoscale, 5 (17), 7724 (2013);
https://doi.org/10.1039/c3nr02141f - G.Xiao, Y.Wang, J.Ning, Y.Wei, B.Liu, W.W.Yu, G.Zou, B.Zou. RSC Advances, 3 (22), 8104 (2013);
https://doi.org/10.1039/c3ra23209c - A.Shapiro, Y.Jang, A.Rubin-Brusilovski, A.K.Budniak, F.Horani, A.Sashchiuk, E.Lifshitz. Chem. Mater., 28 (17), 6409 (2016);
https://doi.org/10.1021/acs.chemmater.6b02917 - M.Thambidurai, Y.Jang, A.Shapiro, G.Yuan, X.Hu, Y.Uechao, O.Wang, E.Lifshitz, H.V.Demir, C.Ang. Opt. Mater. Express, 7, 2326 (2017);
https://doi.org/10.1364/OME.7.002326 - I.A.Shuklov, V.F.Razumov. Russ. Chem. Rev., 89, 379 (2020);
https://doi.org/10.1070/RCR4917 - R.D.Schaller, V.I.Klimov. Phys. Rev. Lett., 92 (18), 186601 (2004);
https://doi.org/10.1103/PhysRevLett.92.186601 - R.J.Ellingson, M.C.Beard, J.C.Johnson, P.Yu, O.I.Micic, A.J.Nozik, A.Shabaev, Al.L.Efros. Nano Letters, 5 (5), 865 (2005);
https://doi.org/10.1021/nl0502672 - M.Kumar, S.Vezzoli, Z.Wang, V.Chaudhary, R.V.Ramanujan, G.G.Gurzadyan, A.Bruno, C.Soci. Phys.Chem.Chem.Phys., 18 (45), 31107 (2016);
https://doi.org/10.1039/c6cp03790a - G.Nair, S.M.Geyer, L.-Y.Chang, M.G.Bawendi. Phys. Rev. B, 78, 125325 (2008);
https://doi.org/10.1103/PhysRevB.78.125325 - H.Goodwin, T.C.Jellicoe, N.J.L.K.Davis, M.L.Böhm. Nanophotonics, 7 (1), 111 (2018);
https://doi.org/10.1515/nanoph-2017-0034 - H.Jin, C.Livache, W.D.Kim, B.T.Diroll, R.D.Schaller, V.I.Klimov. Nat. Mater., 22, 1013 (2023);
https://doi.org/10.1038/s41563-023-01598-x - S.Keuleyan, E.Lhuillier, P.Guyot-Sionnest. J. Am. Chem. Soc., 8(8), 8676 (2011);
https://doi.org/10.1021/nn503805h - S.Keuleyan, E.Lhuillier, P.Guyot-Sionnest. J. Am. Chem. Soc., 133 (41), 16422 (2011);
https://doi.org/10.1021/ja2079509 - X.Tang, Guang fu Wu, K.W.C.Lai. J. Mater. Chem. C, 5 (2), 362 (2017);
https://doi.org/10.1039/c6tc04248a - Y.Yifat, M.Ackerman, P.Guyot-Sionnest. Appl. Phys. Lett., 110(4), 041106 (2017);
https://doi.org/10.1063/1.4975058 - M.E.Cryer, J.E.Halp. ACS Photonics, 5 (8), 3009 (2018);
https://doi.org/10.1021/acsphotonics.8b00738 - Z.Deng, K.S.Jeong, P.Guyot-Sionnest. ACS Nano, 8 (11), 11707 (2014);
https://doi.org/10.1021/nn505092a - M.Chen, Q.Hao, Y.Luo, X.Tang. ACS Nano, 16, 11027 (2022);
https://doi.org/10.1021/acsnano.2c03631 - E.Lhuillier, S.Keuleyan, P.Zolotavin, P.Guyot-Sionnest. Adv. Mater., 25 (1), 137 (2013);
https://doi.org/10.1002/adma.201203012 - E.Heves, C.Ozturk, V.Ozguz, Y.Gurbuz. IEEE Electron. Dev. Lett., 34 (5), 662 (2013);
https://doi.org/10.1109/LED.2013.2253756 - A.G.Vitukhnovsky. Phys. Usp., 56 (6), 623 (2013);
https://doi.org/10.3367/UFNe.0183.201306h.0653 - A.N.Aleshin. Phys. Usp., 56 (6), 627 (2013);
https://doi.org/10.3367/UFNe.0183.201306i.0657 - A.Jagtap, N.Goubet, C.Livache, A.Chu, B.Martinez, C.Greboval, J.Qu, E.Dandeu, L.Becerra, N.Witkowski, S.Ithurria, F.Mathevet, M.G.Silly, B.Dubertret, E.Lhuillier. J. Phys. Chem. C, 122 (26), 14979 (2018);
https://doi.org/10.1021/acs.jpcc.8b03276 - P.Martyniuk, M.Kopytko, A.Rogalski. Opto-Electron. Rev., 22 (2), 127 (2014);
https://doi.org/10.2478/s11772-014-0187-x - A.M.Jagtap, B.Martinez, N.Goubet, A.Chu, C.Livache, C.Greboval, J.Ramade, D.Amelot, P.Trousset, A.Triboulin, S.Ithurria, M.G.Silly, B.Dubertret, E.Lhuillier. ACS Photonics, 5 (11), 4569 (2018);
https://doi.org/10.1021/acsphotonics.8b01032 - B.Martinez, C.Livache, A.Chu, C.Gréboval, H.Cruguel, N.Goubet, E.Lhuillier. Phys. Status Solidi A, 1900449 (2019);
https://doi.org/10.1002/pssa.201900449 - C.Livache, B.Martinez, N.Goubet, C.Gréboval, J.Qu, A.Chu, S.Royer, S.Ithurria, M.G.Silly, B.Dubertret, E.Lhuillier. Nat. Commun., 10 (1), 2125 (2019);
https://doi.org/10.1038/s41467-019-10170-8 - X.Tang, M.M.Ackerman , M.Chen, P.Guyot-Sionnest. Nat. Photon., 13 (4), 277 (2019);
https://doi.org//10.1038/s41566-019-0362-1 - M.M.Ackerman , M.Chen, P.Guyot-Sionnest. Appl. Phys. Lett., 116 (8), 083502 (2020);
https://doi.org/10.1063/1.5143252 - M.M.Ackerman, X.Tang, P.Guyot-Sionnest. ACS Nano, 12 (7), 7264 (2018);
https://doi.org/10.1021/acsnano.8b03425 - X.Lan, M.Chen, M.H.Hudson, V.Kamysbayev, Y.Wang, P.Guyot-Sionnest, D.V.Talapin. Nat. Mater., 19, 323 (2020);
https://doi.org/10.1038/s41563-019-0582-2 - X.Xue, M.Chen, Y.Luo, T.Qin, X.Tang, Q.Hao. Light Sci. Appl., 12, 2 (2023);
https://doi.org/10.1038/s41377-022-01014-0 - J.P.Clifford, K.W.Johnston, L.Levina, E.H.Sargent. Appl. Phys. Lett., 91 (25), 2531171 (2007);
https://doi.org/10.1063/1.2823582 - J.P.Clifford, G.Konstantatos, K.W.Johnston, S.Hoogland, L.Levina, E.H.Sargent. Nat. Nanotechnol., 9 (1), 40 (2008);
https://doi.org/10.1038/NNANO.2008.313 - J.P.Clifford. PhD Thesis. University of Toronto, 2008
- R.Dong, C.Bi, Q.Dong, F.Guo, Y.Yuan, Y.Fang, Z.Xiao, J.Huang. Adv. Opt. Mater., 2 (6), 549 (2014);
https://doi.org/10.1002/adom.201400023 - J.-B.Kwon, S.-W.Kim, B.-H.Kang, S.-H.Yeom, W.-H.Lee, D.-H.Kwon, J.-S.Lee, S.W.Kang. Nano Convergence, 7, 28 (2020);
https://doi.org/10.1186/s40580-020-00238-3 - G.S.Selopal, H.Zhao, Z.M.Wang, F.Rosei. Adv. Funct. Mater., 1908762 (2020);
https://doi.org/10.1002/adfm.201908762 - Y.Wei, Z.Ren, A.Zhang, P.Mao, H.Li, X.Zhong, W.Li, S.Yang, J.Wang. Adv. Funct. Mater., 28 (11), 1706690 (2018);
https://doi.org/10.1002/adfm.201706690 - B.N.Pal, I.Robel, A.Mohite, R.Laocharoensuk, D.J.Werder, V.I.Klimov. Adv. Funct. Mater., 22 (8), 1741 (2012);
https://doi.org/10.1002/adfm.201102532 - P.R.Brown, D.Kim, R.R.Lunt, Z.Ni, M.G.Bawendi, J.C.Grossman, V.Bulovic. ACS Nano, 8 (6), 5863 (2014);
https://doi.org/10.1021/nn500897c - J.W.Lee, D.Y.Kim, F.So. Adv. Funct., Mater., 25 (8), 1233 (2015);
https://doi.org/10.1002/adfm.201403673 - W.Gao, G.Zhai, C.Zhang, Z.Shao, L.Zheng, Y.Zhang, Y.Yang, X.Li, X.Liu, B.Xu. RSC Adv., 8 (27), 15149 (2018);
https://doi.org/10.1039/c8ra01422a - I.D.Skurlov, I.G.Korzhenevskii, A.S.Mudrak, A.Dubavik, S.A.Cherevkov, P.S.Parfenov, X.Zhang, A.V.Fedorov, A.P.Litvin, A.V.Baranov. Materials, 12 (19), 3219 (2019);
https://doi.org/10.3390/ma12193219 - J.Xu, H.Wang, S.Yang, G.Ni, B.Zou. J. Alloys Compd., 764, 446 (2018);
https://doi.org/10.1016/j.jallcom.2018.06.105 - A.Stavrinadis, S.Pradhan, P.Papagiorgis, G.Itskos, G.Konstantatos. ACS Energy Lett., 2 (4), 739 (2017);
https://doi.org/10.1021/acsenergylett.7b00091 - Q.Xu, L.Meng, K.Sinha, F.I.Chowdhury, J.Hu, X.Wang. ACS Photonics, 7, 1297 (2020);
https://doi.org/10.1021/acsphotonics.0c00363 - V.S.Popov, V.P.Ponomarenko, D.V.Dyomkin, I.A.Shuklov, A.V.Gadomskaya, S.B.Brichkin, N.A.Lavrentiev, V.U.Gak, A.E.Mirofyanchenko, E.V.Mirofyanchenko, A.V.Katsaba, P.V.Arsenov, V.V.Ivanov, V.F.Razumov. Dokl. Phys., 68 (7), 217 (2023);
https://doi.org/10.1134/S1028335823070066 - W.J.E.Beek, M.M.Wienk, M.Kemerink, X.Yang, R.A.J.Janssen. J. Phys. Chem. B, 109 (19), 9505 (2005);
https://doi.org/10.1021/jp050745x - D.Langley, G.Giusti, C.Mayousse, C.Celle, D.Bellet, J.-P.Simonato. Nanotechnology, 24 (45), 452001 (2013);
https://doi.org/10.1088/0957-4484/24/45/452001 - J.Hu, S.Yang, Z.Zhang, H.Li, C.P.Veeramalai, M.Sulaman, M.I.Saleem, Y.Tang, Y.Jiang, L.Tang, B.Zou. J. Mater. Sci. Technol., 68, 216 (2021);
https://doi.org/10.1016/j.jmst.2020.06.047 - J.Qiu, B.Weng, L.L.McDowell, Z.Shi. RSC Adv., 9 (72), 42516 (2019);
https://doi.org/10.1039/c9ra07664f - X.Tang, M.Chen, A.Kamath, M.Ackerman, P.Guyot-Sionnest. ACS Photonics, 7 (5), 1117 (2020);
https://dx.doi.org/10.1021/acsphotonics.0c00247 - J.Yang, Y.Lv, Z.He, B.Wang, S.Chen, F.Xiao, H.Hu, M.Yu, H.Liu, X.Lan, H.Y.Hsu, H.Song, J.Tang. ACS Photonics, 10 (7), 2226 (2023);
https://doi.org/10.1021/acsphotonics.2c01145 - W.Gong, P.Wang, W.Deng, J.Li, W.Li, J.Li, Z.Chen, J.Li, Y.Zhang. IEEE Transactions on Electron Devices, 70 (7), 3668 (2023);
https://doi.org/10.1109/TED.2023.3276730 - R.S.C.Gobbold. Theory and Applications of Field-Effect Transistors. (Wiley-Interscience, 1970)
- M.Chen, H.Lu, N.M.Abdelazim, Y.Zhu, Z.Wang, W.Ren, S.V.Kershaw, A.L.Rogach, N.Zhao. ACS Nano, 11 (6), 5614 (2017);
https://doi.org/10.1021/acsnano.7b00972 - N.Huo, S.Gupta, G.Konstantatos. Adv. Mater., 29 (17), 1606576 (2017);
https://doi.org/10.1002/adma.201606576 - M.Chen, X.Lan, X.Tang, Y.Wang, M.H.Hudson, D.V.Talapin, P.Guyot-Sionnest. ACS Photonics, 6 (9), 2358 (2019);
https://doi.org/10.1021/acsphotonics.9b01050 - G.Konstantatos, M.Badioli, L.Gaudreau, J.Osmond, M.Bernechea, F.P.G. de Arquer, F.Gatti, F.H.L.Koppens. Nat. Nanotechnol., 7 (6), 363 (2012);
https://doi.org/10.1038/NNANO.2012.60 - D.Zhang, L.Gan, Y.Cao, Q.Wang, L.Qi, X.Guo. Adv. Mater., 24, 2715 (2012);
https://doi.org/10.1002/adma.201104597 - Z.Sun, Z.Liu, J.Li, G.Tai, S.-P.Lau, F.Yan. Adv. Mater., 24 (43), 5878 (2012);
https://doi.org/10.1002/adma.201202220 - L.Turyanska, O.Makarovsky, S.A.Svatek, P.H.Beton, C.J.Mellor, A.Patanè, L.Eaves, N.R.Thomas, M.W.Fay, A.J.Marsden, N.R.Wilson. Adv. Electron. Mater., 1, 1500062 (2015);
https://doi.org/10.1002/aelm.201500062 - I.Nikitskiy, S.Goossens, D.Kufer, T.Lasanta, G.Navickaite, F.H.L.Koppens, G.Konstantatos. Nat. Commun., 7, 11954 (2016);
https://doi.org/10.1038/ncomms11954 - Y.Zhang, M.Cao, X.Song, J.Wang, Y.Che, H.Dai, X.Ding, G.Zhang, J.Yao. J. Phys. Chem. C, 119 (37), 21739 (2015);
https://doi.org/10.1021/acs.jpcc.5b07318 - V.P.Ponomarenko, V.S.Popov, S.V.Popov. J. Commun. Technol. Electron., 66 (9), 1108 (2021);
https://doi.org/10.1134/S1064226921090138 - V.P.Ponomarenko, V.S.Popov, S.V.Popov. J. Commun. Technol. Electron., 67 (9), 1134 (2022);
https://doi.org/10.1134/S64226922090121 - D.Kufer, I.Nikitskiy, T.Lasanta, G.Navickaite, F.H.L.Koppens, G.Konstantatos. Adv. Mater., 27 (1), 176 (2015);
https://doi.org/10.1002/adma.201402471 - D.Kufer, T.Lasanta, M.Bernechea, F.H.L.Koppens, G.Konstantatos. ACS Photonics, 3 (7), 1324 (2016);
https://doi.org/10.1021/acsphotonics.6b00299 - Y.Yu, Y.Zhang, X.Song, H.Zhang, M.Cao, Y.Che, H.Dai, J.Yang, H.Zhang, J.Yao. ACS Photonics, 4 (4), 950 (2017);
https://doi.org/10.1021/acsphotonics.6b01049 - C.Hu, D.Dong, X.Yang, K.Qiao, D.Yang, H.Deng, S.Yuan, J.Khan, Y.Lan, H.Song, J.Tang. Adv. Funct. Mater., 27 (2), 1603605 (2016);
https://doi.org/10.1002/adfm.201603605 - L.Gao, C.Chen, K.Zeng, C.Ge, D.Yang, H.Song, J.Tang. Light: Sci. Appl., 5 (7), e16126 (2016);
https://doi.org/10.1038/lsa.2016.126 - A.-Y.Lee, H.-S.Ra, D.H.Kwak, M.-H.Jeong, J.-H.Park, Y.-S.Kang, W.-S.Chae, J.-S.Lee. ACS Appl. Mater. Interfaces, 10 (18), 16033 (2018);
https://doi.org/10.1021/acsami.8b03285 - C.You, G.Zhang, W.Deng, C.Zhao, B.An, B.Liu, B.Wang, H.Yan, D.Liu, Y.Zhang. J. Mater. Chem. C, 7, 2232 (2019);
https://doi.org/10.1039/c8tc05735d - J.Qiao, X.Kong, Z.-X.Hu, F.Yang, W.Ji. Nat. Commun., 5, 4475 (2014);
https://doi.org/10.1038/ncomms5475 - P.Chen, Z.Wu, Y.Shi, C.Li, J.Wang, J.Yang, X.Dong, J.Gou, J.Wang, Y.Jiang. J. Mater. Sci. Mater. Electron., 32, 9452 (2021);
https://doi.org/10.1007/s10854-021-05609-y - H.Zhang, Y.Zhang, X.Song, Y.Yu, M.Cao, Y.Che, J.Wang, J.Yang, H.Dai, G.Zhang J.Yao. Nanotechnology, 27, 425204 (2016);
https://doi.org/10.1088/0957-4484/27/42/425204 - Y.Che, X.Cao, J.Yao. Opt. Mater., 89, 138 (2019);
https://doi.org/10.1016/j.optmat.2019.01.014 - A.J.Ben-Sasson, D.Azulai, H.Gilon, A.Facchetti, G.Markovich, N.Tessler. ACS Appl. Mater. Interfaces, 7 (4), 2149 (2015);
https://doi.org/10.1021/am505174p - P.Guyot-Sionnest, J.C.Peterson, C.Melnychuk. J. Phys. Chem. C, 126, 17196 (2022);
https://doi.org/10.1021/acs.jpcc.2c05391 - S.Arya, A.Sharma, B.Singh, M.Riyas, P.Bandhoria, M.Aatif, V.Gupta. Opt. Mater., 79, 15 (2018);
https://doi.org/10.1016/j.optmat.2018.03.035 - S.Chand, N.Thakur, S.C.Katyal, P.B.Barman, V.Sharma, P.Sharma. Sol. Energy Mater. Sol. Cells, 168, 183 (2017);
https://doi.org/10.1016/j.solmat.2017.04.033 - K.Byrappa, T.Adschiri. Prog. Cryst. Growth Charact. Mater., 53, 117 (2007);
https://doi.org/10.1016/j.pcrysgrow.2007.04.001 - Y.Zhao, X.-H.Liao, J.-M.Hong, J.-J.Zhu. Mater. Chem. Phys., 87, 149 (2004);
https://doi.org/10.1016/j.matchemphys.2004.05.026 - H.Lu, G.M.Carroll, N.R.Neale, M.C.Beard. ACS Nano, 13, 939 (2019);
https://doi.org/10.1021/ACSnano.8B09815 - A.L.Efros, L.E.Brus. ACS Nano, 15, 6192 (2021);
https://doi.org/10.1021/acsnano.1c01399 - J.W.Lee, D.Y.Kim, S.Baek, H.Yu, F.So. Small, 12, 1328 (2016);
https://doi.org/10.1002/smll.201503244 - V.K.LaMer, R.H.Dinegar. J. Am. Chem. Soc., 72, 4847 (1950);
https://doi.org/10.1021/ja01167a001 - Y.Yin, A.P.Alivisatos. Nature, 437, 664 (2005);
https://doi.org/10.1038/nature04165 - M.Yu.Koroleva, E.V.Yurtov. Russ. Chem. Rev., 90, 293 (2021);
https://doi.org/10.1070/RCR4962 - M.Yu.Koroleva, E.V.Yurtov. Russ. Chem. Rev., 91 (5), RCR5024 (2022);
https://doi.org/10.1070/RCR5024 - C.Li, Y.Zhao, F.Li, Z.Shi, S.Feng. Chem. Mater., 22, 1901 (2010);
https://doi.org/10.1021/cm903648c - M.P.Hendricks, M.P.Campos, G.T.Cleveland, I.Jen-La Plante, J.S.Owen. Science, 348, 1226 (2015);
https://doi.org/10.1126/science.aaa2951;
https://doi.org/10.1126/science.aaa2951 - B.Yuan, X.Tian, S.Shaw, R.E.Petersen, L.Cademartiri. Phys. Status Solidi A, 214, 1600543 (2017);
https://doi.org/10.1002/pssa.201600543 - W.M.M.Lin, M.Yarema, M.Liu, E.Sargent, V.Wood. Chimia, 75, 398 (2021);
https://doi.org/10.3929/ethz-b-000488369 - M.K.Norr. J. Phys. Chem., 65, 1278 (1961);
https://doi.org/10.1021/j100825a507 - J.W.Thomson, K.Nagashima, P.M.Macdonald, G.A.Ozin. J. Am. Chem. Soc., 133, 5036 (2011);
https://doi.org/10.1021/ja1109997 - C.M.Evans, M.E.Evans, T.D.Krauss. J. Am. Chem. Soc., 132, 10973 (2010);
https://doi.org/10.1021/ja103805s - J.S.Steckel, B.K.H.Yen, D.C.Oertel, M.G.Bawendi. J. Am. Chem. Soc., 128, 13032 (2006); doi: 10.1021/ja062626g
- L.M.De Leon Covian, J.A.Arizpe Zapata, M.A.Garza Navarro, D.I..Garza Gutierrez. Chalcogenide Lett., 11, 567 (2014)
- J.Joo, J.M.Pietryga, J.A.McGuire, S.-H.Jeon, D.J.Williams, H.-L.Wang, V.I.Klimov. J. Am. Chem. Soc., 131, 10620 (2009);
https://doi.org/10.1021/ja903445 - R.A.Ganeev, I.A.Shuklov, A.I.Zvyagin, D.V.Dyomkin, M.S.Smirnov, O.V.Ovchinnikov, A.A.Lizunova, A.M.Perepukhov, V.S.Popov, V.F.Razumov. Opt. Express, 29, 16710 (2021);
https://doi.org/10.1364/OE.425549 - B.Hou, D.Benito-Alifonso, N.Kattan, D.Cherns, M.C.Galan, D.J.Fermín. Chem. – Eur. J., 19, 15847 (2013);
https://doi.org/10.1039/c4ta00285g - T.-M.Wang, B.Gao, Q.Wang, M.Zhao, K.-B.Kang, Z.-G.Xu, H.-L.Zhang. Chem. – Asian J., 8, 912 (2013);
https://doi.org/10.1002/asia.201201154 - Y.Pan, M.A.Sohel, L.Pan, Z.Wei, H.Bai, M.C.Tamargo, R.John. Mater. Today Proc., 2, 281 (2015);
https://doi.org/10.1016/j.matpr.2015.04.043 - D.K.Smith, J.M.Luther, O.E.Semonin, A.J.Nozik, M.C.Beard. ACS Nano, 5, 183 (2011);
https://doi.org/10.1021/nn102878u - Y.Zhang, G.Wu, C.Ding, F.Liu, Y.Yao, Y.Zhou, C.Wu, N.Nakazawa, Q.Huang, T.Toyoda, R.Wang, S.Hayase, Z.Zou, Q.Shen. J. Phys. Chem. Lett., 9, 3598 (2018);
https://doi.org/10.1021/acs.jpclett.8b01514 - A.Nag, M.V.Kovalenko, J.-S.Lee, W.Liu, B.Spokoyny, D.V.Talapin. J. Am. Chem. Soc., 133, 10612 (2011);
https://doi.org/10.1021/ja2029415 - J.Y.Woo, J.-H.Ko, J.H.Song, K.Kim, H.Choi, Y.-H.Kim, D.C.Lee, S.Jeong. J. Am. Chem. Soc., 136, 8883 (2014);
https://doi.org/10.1021/ja503957r - C.Fu, H.Wang, T.Song, L.Zhang, W.Li, B.He, M.Sulaman, S.Yang, B.Zou. Nanotechnology, 27, 065201 (2016);
https://doi.org/10.1088/0957-4484/27/6/065201 - H.-M.So, J.Y.Woo, S.Jeong, W.S.Chang. Opt. Mater. Express, 7, 2905 (2017);
https://doi.org/10.1364/OME.7.002905 - J.Y.Woo, S.Lee, S.Lee, W.D.Kim, K.Lee, K.Kim, H.J.An, D.C.Lee, S.Jeong. J. Am. Chem. Soc., 138, 876 (2016);
https://doi.org/10.1021/acs.jpcc.6b10920 - N.Goubet, A.Jagtap, C.Livache, B.Martinez, H.Portalès, X.Z.Xu, R.P.S.M.Lobo, B.Dubertret, E.Lhuillier. J. Am. Chem. Soc., 140, 5033 (2018);
https://doi.org/10.1021/jacs.8b02039 - I.A.Shuklov, I.S.Mikhel, A.V.Nevidimov, K.P.Birin, N.V.Dubrovina, A.A.Lizunova, V.F.Razumov. ChemistrySelect, 5, 11896 (2020);
https://doi.org/10.1002/slct.202002711 - S.W.O’Neill, T.D.Krauss. J. Am. Chem. Soc., 144, 6251 (2022);
https://doi.org/10.1021/jacs.1c11697 - Y.Pan, H.Bai, L.Pan, Y.Li, M.C.Tamargo, M.Sohel, J.R.Lombardi. J. Mater. Chem., 22, 23593 (2012);
https://doi.org/10.1039/c2jm15540k - I.A.Shuklov, A.A.Mardini, I.V.Skabitsky, N.V.Dubrovina, A.M.Perepukhov, A.A.Lizunova, V.F.Razumov. Nano-Struc. Nano-Objects, 35, 101020 (2023);
https://doi.org/10.1016/j.nanoso.2023.101020 - H.Zhang, P.Guyot-Sionnest. J. Phys. Chem. Lett., 11, 6860 (2020);
https://doi.org/10.1021/acs.jpclett.0c01550 - L.Cademartiri, E.Montanari, G.Calestani, A.Migliori, A.Guagliardi, G.A.Ozin. J. Am. Chem. Soc., 128, 10337 (2006);
https://doi.org/10.1021/ja063166u - D.Baranov, M.J.Lynch, A.C.Curtis, A.R.Carollo, C.R.Douglass, A.M.Mateo-Tejada, D.M.Jonas. Chem. Mater., 31, 1223 (2019);
https://doi.org/10.1021/acs.chemmater.8b04198 - A.Antanovich, A.Prudnikau, M.Artemyev. J. Phys. Chem. C, 118, 21104 (2014);
https://doi.org/10.1021/jp506479 - T.T.Tan, S.T.Selvan, L.Zhao, S.Gao, J.Y.Ying. Chem. Mater., 19, 3112 (2007);
https://doi.org/10.1021/cm061974e - A.Bundulis, I.A.Shuklov, V.V.Kim, A.A.Mardini, J.Grube, J.Alnis, A.A.Lizunova, V.F.Razumov, R.A.Ganeev. Nanomaterials, 11, 3351 (2021);
https://doi.org/10.3390/nano11123351 - E.Bossavit, J.Qu, C.Abadie, C.Dabard, T.Dang, E.Izquierdo, A.Khalili, C.Gréboval, A.Chu, S.Pierini, M.Cavallo, Y.Prado, V.Parahyba, X.Z.Xu, A.Decamps Mandine, M.Silly, S.Ithurria, E.Lhuillier. Adv. Opt. Mater., 10, 2101755 (2022);
https://doi.org/10.1002/adom.202101755 - Y.Prado, J.Qu, C.Gréboval, C.Dabard, P.Rastogi, A.Chu, A.Khalili, X.Z.Xu, C.Delerue, S.Ithurria, E.Lhuillier. Chem. Mater., 33, 2054 (2021);
https://doi.org/10.1021/acs.chemmater.0c04526 - S.S.Al-Showiman. Inorg. Chim. Acta, 141, 263 (1988);
https://doi.org/10.1016/S0020-1693(00)83918-3 - F.P.G. de Arquer, D.V.Talapin, V.I.Klimov, Y.Arakawa, M.Bayer, E.H.Sargent. Science, 373, (2021);
https://doi.org/10.1126/science.aaz8541 - A.V.Lukashin, N.S.Falaleev, N.I.Verbitskiy, A.A.Volykhov, I.I.Verbitskiy, L.V.Yashna, A.S.Kumskov, N.A.Kiselev, A.A.Eliseev. Nanosyst.: Phy. Chem. Math., 6, 850 (2015);
https://doi.org/10.17586/2220-8054-2015-6-6-850-856 - Lead Sulfide (PbS) Crystal Ctructure, Lattice Parameters, Thermal Expansion. (Eds O.Madelung, U.Rössler, M.Schulz) In Non-Tetrahedrally Bonded Elements and Binary Compounds I (Berlin, Heidelberg: Springer-Verlag, 1998);
https://doi.org/10.1007/10681727_889 - Lead Sulfide (PbS) Crystal Ctructure, Lattice Parameters, Thermal Expansion. (Eds O.Madelung, U.Rössler, M.Schulz) In Non-Tetrahedrally Bonded Elements and Binary Compounds I (Berlin, Heidelberg: Springer-Verlag, 1998);
https://doi.org/10.1007/10681727_903 - Lead Sulfide (PbS) Crystal Ctructure, Lattice Parameters, Thermal Expansion. (Eds O.Madelung, U.Rössler, M.Schulz) In Non-Tetrahedrally Bonded Elements and Binary Compounds I (Berlin, Heidelberg: Springer-Verlag, 1998);
https://doi.org/10.1007/10681727_711 - Y.Jun, J.-H.Lee, J.Choi, J.Cheon. J. Phys. Chem. B, 109, 14795 (2005);
https://doi.org/10.1021/jp052257v - H.-Y.Si, D.Yuan, J.-S.Chen, G.-M.Chow. RSC Adv., 1, 817 (2011);
https://doi.org/10.1039/c1ra00279a - Y.Kim, F.Che, J.W.Jo, J.Choi, F.P.G.de Arquer, O.Voznyy, B.Sun, J.Kim, M.Choi, R.Quintero Bermudez, F.Fan, C.S.Tan, E.Bladt, G.Walters, A.H.Proppe, C.Zou, H.Yuan, S.Bals, J.Hofkens, M.B.J.Roeffaers, S.Hoogland, E.H.Sargent. Adv. Mater., 31, 1805580 (2019);
https://doi.org/10.1002/adma201805580 - Y.Xia, W.Chen, P.Zhang, S.Liu, K.Wang, X.Yang, H.Tang, L.Lian, J.He, X.Liu, G.Liang, M.Tan, L.Gao, H.Liu, H.Song, D.Zhang, J.Gao, K.Wang, X.Lan, X.Zhang, P.Müller Buschbaum, J.Tang, J.Zhang. Adv. Funct. Mater., 30, 2000594 (2020);
https://doi.org/10.1002/adfm.202000594 - W.K.Bae, J.Joo, L.A.Padilha, J.Won, D.C.Lee, Q.Lin, W.Koh, H.Luo, V.I.Klimov, J.M.Pietryga. J. Am. Chem. Soc., 134, 20160 (2012);
https://doi.org/10.1021/ja309783v - A.L.Hagström, A.Fahlman. Appl. Surf. Sci., 1, 455 (1978);
https://doi.org/10.1016/0378-5963(78)90024-7 - C.Zha, C.Ji, J.Zhang, L.Shen, X.Zhang, S.Dong, N.Bao. RSC Adv., 6, 107151 (2016);
https://doi.org/10.1039/C6RA24119K - I.A.Shuklov, V.F.Toknova, A.A.Lizunova, V.F.Razumov. Mater. Today Chem., 18, 100357 (2020);
https://doi.org/10.1016/j.mtchem.2020.100357 - W.Koh, S.R.Saudari, A.T.Fafarman, C.R.Kagan, C.B.Murray. Nano Lett., 11, 4764 (2011);
https://doi.org/10.1021/nl202578g - Z.Quan, W.S.Loc, C.Lin, Z.Luo, K.Yang, Y.Wang, H.Wang, Z.Wang, J.Fang. Nano Lett., 12, 4409 (2012);
https://doi.org/10.1021/nl302324b - R.A.Ganeev, I.A.Shuklov, A.I.Zvyagin, D.V.Dyomkin, S.I.Bocharova, V.S.Popov, V.F.Toknova, A.A.Lizunova, O.V.Ovchinnikov, V.F.Razumov. Opt. Mater., 121, 111499 (2021);
https://doi.org/10.1016/j.optmat.2021.111499 - J.E.Murphy, M.C.Beard, A.G.Norman, S.P.Ahrenkiel, J.C.Johnson, P.Yu, O.I.Mićić, R.J.Ellingson, A.J.Nozik. J. Am. Chem. Soc., 128, 3241 (2006);
https://doi.org/10.1021/ja057497 - A.H.Ip, A.Kiani, I.J.Kramer, O.Voznyy, H.F.Movahed, L.Levina, M.M.Adachi, S.Hoogland, E.H.Sargent. ACS Nano, 9, 8833 (2015);
https://doi.org/10.1021/acsnano.5b02164 - H.Choi, J.-H.Ko, Y.-H.Kim, S.Jeong. J. Am. Chem. Soc., 135, 5278 (2013);
https://doi.org/10.1021/ja400948t - H.R.You, J.Y.Park, D.H.Lee, Y.Kim, J.Choi. Appl. Sci., 10, 975 (2020);
https://doi.org/10.3390/app10030975 - A.Kiani, B.R.Sutherland, Y.Kim, O.Ouellette, L.Levina, G.Walters, C.-T.Dinh, M.Liu, O.Voznyy, X.Lan, A.J.Labelle, A.H.Ip, A.Proppe, G.H.Ahmed, O.F.Mohammed, S.Hoogland, E.H.Sargent. Appl. Phys. Lett., 109, 183105 (2016);
https://doi.org/10.1063/1.4966217 - M.Liu, O.Voznyy, R.Sabatini, F.P.G.de Arquer, R.Munir, A.H.Balawi, X.Lan, F.Fan, G.Walters, A.R.Kirmani, S.Hoogland, F.Laquai, A.Amassian, E.H.Sargent. Nat. Mater., 16, 258 (2017);
https://doi.org/10.1038/NMAT4800 - M.M.van der Sluijs, D.Sanders, K.J.Jansen, G.Soligno, D.Vanmaekelbergh, J.L.Peters. J. Phys. Chem. C, 126, 986 (2022);
https://doi.org/10.1021/acs.jpcc.1c07430 - J.L.Peters, T.Altantzis, I.Lobato, M.A.Jazi, C.van Overbeek, S.Bals, D.Vanmaekelbergh, S.B.Sinai. Chem. Mater., 30, 4831 (2018);
https://doi.org/10.1021/acs.chemmater.8b02178 - J.Zhang, A.Kumbhar, J.He, N.C.Das, K.Yang, J.-Q.Wang, H.Wang, K.L.Stokes, J.Fang. J. Am. Chem. Soc., 130, 15203 (2008);
https://doi.org/10.1021/ja806120w - S.Yamamuro, K.Sumiyama. Chem. Phys. Lett., 418, 166 (2006);
https://doi.org/10.1016/j.cplett.2005.10.111 - Nanoscale Materials in Chemistry. (Eds K.J.Klabunde, R.M.Richards). (Wiley, 2009);
https://doi.org/10.1002/9780470523674 - S.Acharya, U.K.Gautam, T.Sasaki, Y.Bando, Y.Golan, K.Ariga. J. Am. Chem. Soc., 130, 4594 (2008);
https://doi.org/10.1021/ja711064b - J.M.Luther, H.Zheng, B.Sadtler, A.P.Alivisatos. J. Am. Chem. Soc., 131, 16851 (2009);
https://doi.org/10.1021/ja906503w - A.C.Onicha, N.Petchsang, T.H.Kosel, M.Kuno. ACS Nano, 6, 2833 (2012);
https://doi.org/10.1021/nn300373w - W.Koh, Y.Yoon, C.B.Murray. Chem. Mater., 23, 1825 (2011);
https://doi.org/10.1021/cm1033172 - B.-R.Hyun, A.C.Bartnik, W.Koh, N.I.Agladze, J.P.Wrubel, A.J.Sievers, C.B.Murray, F.W.Wise. Nano Lett., 11, 2786 (2011);
https://doi.org/10.1021/nl201115 - J.E.Boercker, E.E.Foos, D.Placencia, J.G.Tischler. J. Am. Chem. Soc., 135, 15071 (2013);
https://doi.org/10.1021/ja404576j - L.Han, D.M.Balazs, A.G.Shulga, M.Abdu Aguye, W.Ma, M.A.Loi. Adv. Electron. Mater., 4, 1 (2018);
https://doi.org/10.1002/aelm.201700580 - K.-S.Cho, D.V.Talapin, W.Gaschler, C.B.Murray. J. Am. Chem. Soc., 127, 7140 (2005);
https://doi.org/10.1021/ja050107s - T.Mokari, M.Zhang, P.Yang. J. Am. Chem. Soc., 129, 9864 (2007);
https://doi.org/10.1021/ja074145i - J.Novák, R.Banerjee, A.Kornowski, M.Jankowski, A.André, H.Weller, F.Schreiber, M.Scheele. ACS Appl. Mater. Interfaces, 8, 22526 (2016);
https://doi.org/10.1021/acsami.6b06989 - T.Huang, Q.Zhao, J.Xiao, L.Qi. ACS Nano, 4, 4707 (2010);
https://doi.org/10.1021/nn101272y - N.Zhao, L.Qi. Adv. Mater., 18, 359 (2006);
https://doi.org/10.1002/adma.200501756 - A.Abu-Hariri, A.K.Budniak, F.Horani, E.Lifshitz. RSC Adv., 11, 30560 (2021);
https://doi.org/10.1039/d1ra04402h - Y.Wang, Q.Dai, X.Yang, B.Zou, D.Li, B.Liu, M.Z.Hu, G.Zou. CrystEngComm, 13, 199 (2011);
https://doi.org/10.1039/c004459h - Mercury Telluride (HgTe). Lattice Parameters. (Eds O.Madelung, U.Rössler, M.Schulz). In II-VI and I-VII Compounds; Semimagnetic Compounds. (Berlin, Heidelberg: Springer-Verlag, 2005);
https://doi.org/10.1007/10681719_677 - J.Yang, H.Hu, Y.Lv, M.Yuan, B.Wang, Z.He, S.Chen, Y.Wang, Z.Hu, M.Yu, X.Zhang, J.He, J.Zhang, H.Liu, H.-Y.Hsu, J.Tang, H.Song, X.Lan. Nano Lett., 22, 3465 (2022);
https://doi.org/10.1021/acs.nanolett.2c00950 - J.Zhang, B.D.Chernomordik, R.W.Crisp, D.M.Kroupa, J.M.Luther, E.M.Miller, J.Gao, M.C.Beard. ACS Nano, 9, 7151 (2015);
https://doi.org/10.1021/acsnano.5b01859 - C.Zhang, Y.Xia, Z.Zhang, Z.Huang, L.Lian, X.Miao, D.Zhang, M.C.Beard, J.Zhang. Chem. Mater., 29, 3615 (2017);
https://doi.org/10.1021/acschemmater.7b00411 - R.Wang, Y.Shang, P.Kanjanaboos, W.Zhou, Z.Ning, E.H.Sargent. Energy Environ. Sci., 9, 1130 (2016);
https://doi.org/10.1039/C5EE03887A - M.J.Choi, F.P.G. de Arquer, A.H.Proppe, A.Seifitokaldani, J.Choi, J.Kim, S.W.Baek, M.Liu, B.Sun, M.Biondi, B.Scheffel, G.Walters, D.H.Nam, J.W.Jo, O.Ouellette, O.Voznyy, S.Hoogland, S.O.Kelley, Y.S.Jung, E.H.Sargent. Nat. Commun., 11, 1 (2020);
https://doi.org/10.1038/s41467-019-13437-2 - Z.Ning, D.Zhitomirsky, V.Adinolfi, B.Sutherland, J.Xu, O.Voznyy, P.Maraghechi, X.Lan, S.Hoogland, Y.Ren, E.H.Sargent. Adv. Mater., 25, 1719 (2013);
https://doi.org/10.1002/adma.201204502 - M.Yuan, D.Zhitomirsky, V.Adinolfi, O.Voznyy, K.W.Kemp, Z.Ning, X.Lan, J.Xu, J.Y.Kim, H.Dong, E.H.Sargent. Adv. Mater., 25, 5586 (2013);
https://doi.org/10.1002/adma201302802 - O.Voznyy, D.Zhitomirsky, P.Stadler, Z.Ning, S.Hoogland, E.H.Sargent. ACS Nano, 6, 8448 (2012);
https://doi.org/10/1021/nn33364d - D.Kim, D.-H.Kim, J.-H.Lee, J.C.Grossman. Phys. Rev. Lett., 110, 196802 (2013);
https://doi.org/10.1103/PhysRevLett.110.196802 - D.M.Balazs, K.I.Bijlsma, H.-H.Fang, D.N.Dirin, M.Döbeli, M.V.Kovalenko, M.A.Loi. Sci. Adv., 3 (1) (2017);
https://doi.org/10.1126/sciadv.aao1558 - D.V.Talapin, C.B.Murray. Science, 310, 86 (2005);
https://doi.org/10.1126/science.1116703 - D.Zhitomirsky, M.Furukawa, J.Tang, P.Stadler, S.Hoogland, O.Voznyy, H.Liu, E.H.Sargent. Adv. Mater., 24, 6181 (2012);
https://doi.org/10.1002/adma.201202825 - D.Bederak, D.M.Balazs, N.V.Sukharevska, A.G.Shulga, M.Abdu-Aguye, D.N.Dirin, M.V.Kovalenko, M.A.Loi. ACS Appl. Nano Mater., 1, 6882 (2018);
https://doi.org/10.1021/acsanm.8b01696 - J.Tang, K.W.Kemp, S.Hoogland, K.S.Jeong, H.Liu, L.Levina, M.Furukawa, X.Wang, R.Debnath, D.Cha, K.W.Chou, A.Fischer, A.Amassian, J.B.Asbury, E.H.Sargent. Nat. Mater., 10, 765 (2011);
https://doi.org/10.1038/NMAT3118 - S.W.Baek, P.Molet, M.J.Choi, M.Biondi, O.Ouellette, J.Fan, S.Hoogland, F.P.G. de Arquer, A.Mihi, E.H.Sargent. Adv. Mater., 31, 1901745 (2019);
https://doi.org/10.1002/adma.201901745 - B.Martinez, C.Livache, N.Goubet, A.Jagtap, H.Cruguel, A.Ouerghi, E.Lacaze, M.G.Silly, E.Lhuillier. J. Phys. Chem. C, 122, 859 (2018);
https://doi.org/10.1021/acs.jpcc.7b09972 - M.Chen, X.Lan, X.Tang, Y.Wang, M.H.Hudson, D.V.Talapin, P.Guyot-Sionnest. ACS Photonics, 6, 2358 (2019);
https://doi.org/10.1021/acsphotonics.9b01050 - M.Chen, G.Shen, P.Guyot-Sionnest. J. Phys. Chem. Lett., 11, 2303 (2020);
https://doi.org/10.1021/acs.jpclett.0c00587 - M.Chen, Q.Hao, Y.Luo, X.Tang. ACS Nano, 16, 11027 (2022);
https://doi.org/10.1021/acsnano.2c03631 - R.H.Harada, H.T.Minden. Phys. Rev., 102, 1258 (1956);
https://doi.org/10.1103/PhysRev.102.1258 - H.T.Dastjerdi, R.Tavakoli, P.Yadav, D.Prochowicz, M.Saliba, M.M.Tavakoli. ACS Appl. Mater. Interfaces, 11, 26047 (2019);
https://doi.org/10.1021/acsami.9b08466 - B.K.Jung, H.K.Woo, C.Shin, T.Park, N.Li, K.J.Lee, W.Kim, J.H.Bae, J.Ahn, T.N.Ng, S.J.Oh. Adv. Opt. Mater., 10, 2101611 (2022);
https://doi.org/10.1002/adom.202101611 - B.Sun, M.Vafaie, L.Levina, M.Wei, Y.Dong, Y.Gao, H.T.Kung, M.Biondi, A.H.Proppe, B.Chen, M.-J.Choi, L.K.Sagar, O.Voznyy, S.O.Kelley, F.Laquai, Z.-H.Lu, S.Hoogland, F.P.G. de Arquer, E.H.Sargent. Nano Lett., 20, 3694 (2020);
https://doi.org/10.1021/acs.nanolett.0c00638 - G.M.Dalpian, J.R.Chelikowsky. Phys. Rev. Lett., 96, 226802 (2006);
https://doi.org/10.1103/PhysRevLett.96.226802 - D.J.Norris, A.L.Efros, S.C.Erwin. Science, 319, 1776 (2008);
https://doi.org/10.1126/science.1143802 - M.S.Kang, A.Sahu, C.D.Frisbie, D.J.Norris. Adv. Mater., 25, 725 (2013);
https://doi.org/10.1002/adma.201203114 - A.Stavrinadis, A.K.Rath, F.P.G. de Arquer, S.L.Diedenhofen, C.Magén, L.Martinez, D.So, G. Konstantatos. Nat. Commun., 4, 2981 (2013);
https://doi.org/10.1038/ncomms3981 - M.Allen, A.Bessonov, T.Ryhänen. Proc. SID Symp. Dig. Tech. Papers, 52 (1), 987 (2021);
https://doi.org/10.1002/sdtp.14855 - V.S.Popov, V.P.Ponomarenko, S.V.Popov. Appl. Phys., 6, 45 (2023);
https://doi.org/10.51368/1996-0948-2023-6-45-53 - Y.Wang, L.Peng, J.Schreier, Y.Bi, A.Black, A.Malla, S. Goossens, G.Konstantatos. Nat. Photon., 18, 236 (2024);
https://doi.org/10.1038/s41566-023-01345-3
Статистика статьи
Статистика просмотров за 2025 год.