Статья: ВОПРОСЫ ПРИМЕНЕНИЯ МЕТОДОВ МАШИННОГО ОБУЧЕНИЯ В ПРОГНОЗИРОВАНИИ ФОРМИРОВАНИЯ ПЕРСПЕКТИВНЫХ ОТРАСЛЕЙ ЭКОНОМИКИ НОВОГО ПОКОЛЕНИЯ
Статья посвящена применению методов машинного обучения при прогнозировании формирования перспективных секторов экономики нового поколения. В условиях современных цифровых трансформаций показано, что замена традиционной существующей экономики на экономические модели нового поколения является одним из приоритетных направлений развития в мире. Обоснована актуальность применения методов машинного обучения (МО), одной из технологий искусственного интеллекта (ИИ), в совершенствовании процессов формирования и развития традиционных секторов экономики, а также в прогнозировании ее перспективных секторов нового поколения. Проведен анализ научных исследований, посвященных проблеме. Цифровая трансформация и технологии, устойчивость и экологичность, экологизация технологий и цикличность, совместное использование, интеллектуальное принятие решений и управление, платформы и экосистемы, инновационное предпринимательство, исследования и экономическое развитие, инклюзивность и социальное развитие, платформенные технологии Индустрии 5.0 формирования технологической экономики нового поколения. Разработаны основные базовые принципы, такие как переход и т. д., проанализированы проблемы ее формирования. Изложены 1 2 особенности и перспективы применения методов машинного обучения при прогнозировании перспективных отраслей экономики нового поколения. Изложены классификационные признаки методов машинного обучения и показаны его модели. Разработана структурная схема этапов прогнозирования развития экономики и предоставлены сведения о ее методах. Проведен сравнительный анализ методов машинного обучения, применяемых при прогнозировании. Разработана структурная схема этапов применения метода машинного обучения в процессе прогнозирования. Даны актуальные рекомендации по применению технологий платформы «Индустрия 4.0» для прогнозирования формирования перспективных отраслей экономики нового поколения на основе реальных данных.
Информация о документе
- Формат документа
- Кол-во страниц
- 1 страница
- Загрузил(а)
- Лицензия
- —
- Доступ
- Всем
- Просмотров
- 1
Предпросмотр документа
Информация о статье
- EISSN
- 2077-5180
- Журнал
- ИСКУССТВЕННЫЕ ОБЩЕСТВА
- Год публикации
- 2024