Статья: ПЛОТНОСТЬ НАИПРОСТЕЙШИХ ДРОБЕЙ С ПОЛЮСАМИ НА ОКРУЖНОСТИ В ВЕСОВЫХ ПРОСТРАНСТВАХ ДЛЯ КРУГА И ОТРЕЗКА
Исследуются аппроксимационные свойства наипростейших дробей (логарифмических производных алгебраических полиномов), все полюсы которых лежат на единичной окружности. Получены критерии плотности таких дробей в классических интегральных пространствах - в пространствах функций, суммируемых со степенью p на единичном отрезке с ультрасферическим весом, и (весовых) пространствах Бергмана, аналитических в единичном круге и суммируемых со степенью p по площади круга функций. Полученные результаты обобщают на случай произвольного показателя p > 0 известные критерии Чуи и Ньюмана и Абакумова, Боричева и Федоровского для пространств Бергмана с p = 1 и p = 2 соответственно.
Информация о документе
- Формат документа
 - Кол-во страниц
 - 1 страница
 - Загрузил(а)
 - Лицензия
 - —
 - Доступ
 - Всем
 
Информация о статье
- ISSN
 - 1025-3106
 - EISSN
 - 2587-5884
 - Журнал
 - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ
 - Год публикации
 - 2024
 
Статистика просмотров
Статистика просмотров статьи за 2025 год.