Архив статей журнала
Мягкая пшеница Triticum aestivum L. является аллополиплоидом (2n = 6x = 42). Ее геном включает в себя геномы трех предковых видов, что позволяет хорошо переносить анеуплоидию ввиду наличия нескольких копий одних и тех же генов, находящихся в гомеологичных хромосомах. Это свойство было продемонстрировано на созданных на основе ряда сортов мягкой пшеницы анеуплоидных линиях. Отсутствие хромосомы 3В у мягкой пшеницы ведет к аномалиям мейотического деления, в том числе к снижению числа хиазм и асинапсису. Замещение хромосомы 3В мягкой пшеницы гомеологичной хромосомой 3R ржи Secale cereale L. приводит к нарушению хиазмообразования и асинапсису, нарушению компактизации хромосом, асинхронному поведению хромосом во втором делении мейоза и нарушениям в динамике микротрубочкового цитоскелета. Вероятно, в хромосоме 3R ржи, в отличие от гомеологичной хромосомы 3B мягкой пшеницы, отсутствуют гены, играющие ключевую роль в контроле нормального протекания мейоза у мягкой пшеницы. Цель данной работы - сравнительный анализ мейотических генов в хромосомах 3B и 3R мягкой пшеницы и диплоидной ржи соответственно. В результате проведенного анализа баз данных обнаружено, что в хромосоме 3R отсутствуют три мейотических гена: TraesCS3B02G308600 (ASK1/ASK2), TraesCS3B02G048300 (FANCM), TraesCS3B02G458900 (EMS1). При этом лишь для гена TraesCS3B02G308600 (ASK1/ASK2) показано отсутствие гомеологов в геноме мягкой пшеницы. На основе известных мейотических генов (mei-гены) мягкой пшеницы были построены и проанализированы генные сети. Гены TraesCS3B02G048300 (FANCM), TraesCS3B02G458900 (EMS1) располагались вне построенных генных сетей, тогда как ген TraesCS3B02G308600 (ASK1/ASK2) вместе с основными описанными генами мейоза формировал сеть из 22 генов. На основании полученных результатов сделано предположение, что отсутствие гена TraesCS3B02G308600 (ASK1/ASK2) у пшенично-ржаной замещенной линии 3R(3B) по большей части определяет характер аномалий мейотического процесса у пшенично-ржаной замещенной линии 3R(3B) Саратовская 29/рожь Онохойская.
Для ускорения получения новых сортов мягкой пшеницы, накапливающих антоциановые соединения в зерне, ранее нами разработаны внутригенные ДНК-маркеры к регуляторным генам Pp и Ba, контролирующим биосинтез антоцианов в перикарпе и алейроновом слое зерновки соответственно. В настоящей работе эти маркеры совместно со сцепленными с целевыми микросателлитными маркерами апробированы при создании линий мягкой пшеницы на основе сорта Элемент 22 и селекционной линии BW49880, накапливающих антоцианы в перикарпе, алейроне и в обоих перечисленных слоях зерновки одновременно. В качестве доноров антоциановой пигментации использованы изогенные линии с окрашенными зерновками, созданные ранее на генетическом фоне сорта Саратовская 29. Оценено суммарное содержание антоцианов в цельнозерновой муке данных линий. Этот показатель зависел от генотипа, увеличиваясь в ряду: краснозерный < фиолетовозерный < голубозерный < чернозерный; за исключением фиолетовозерной линии, полученной на основе BW49880 (накапливающей одновременно Zn) и достоверно не отличавшейся от чернозерных линий. Обсуждается применение полученных линий в качестве перспективных доноров генов биосинтеза антоцианов для создания новых сортов пшеницы с повышенным содержанием антоцианов.
В настоящее время в селекционном процессе, связанном с получением отдаленных гибридов, широко применяют биотехнологические подходы. Проблему неразвития эндосперма и гибели зародыша на ранних стадиях эмбриогенеза у гибридных зерновок можно решить с помощью метода культуры ткани. В данной работе представлены результаты получения гибридов в прямых и обратных скрещиваниях гексаплоидной тритикале (сортов Орден, Садко, линии ДТ-43 и селекционной линии Сиарс), мягкой пшеницы-донора фиолетовой окраски зерна (линия i: S29PF ) и фиолетовозерной полбы (линии 27-3/17 и31/16) с использованием метода эмбриокультуры in vitro. Этот способ позволил получить в общей сложности 41 растение F1 из 114 выделенных эксплантов. Получены фертильные растения F2 из комбинаций с донорами фиолетовой окраски зерна Орден × i: S29PF, i: S29PF × Орден и Садко × 27-3/17, которые в дальнейшем будут включены в селекционный процесс. Таким образом, биотехнологические подходы играют важную роль в создании исходного селекционного материала и преодолении несовместимости родительских форм в отдаленных скрещиваниях пшеницы с тритикале.