Архив статей журнала
Рассматриваются системы параболических уравнений и вопросы корректности в пространствах Соболева обратных задач определения коэффициентов теплообмена на границе раздела сред, входящих в условие сопряжения типа неидеального контакта. Показано, что при определённых условиях на данные решение задачи существует и единственно. Метод является конструктивным, и на основе предложенного подхода возможно построение численных методов решения задачи. Доказательство использует априорные оценки и теорему о неподвижной точке.
Доказано существование единственного решения для нелокальных задач сопряжений в прямоугольной области для уравнения в частных производных 3-го порядка, когда при y > 0 уравнение характеристик имеет 3 кратных корня, а при y < 0 имеет 1 простой и 2 кратных корня. С помощью функции Грина и метода интегральных уравнений решение задач эквивалентным образом сводится к решению краевой задачи для следа искомой функции при y = 0, а затем - к решению интегрального уравнения Фредгольма 2-го рода, разрешимость которого доказывается методом последовательных приближений. Решение задачи при y > 0 строится методом функции Грина, а при y < 0 - сведением задачи к двумерному интегральному уравнению Вольтерра 2-го рода.