Архив статей журнала
Рассматриваются системы параболических уравнений и вопросы корректности в пространствах Соболева обратных задач определения коэффициентов теплообмена на границе раздела сред, входящих в условие сопряжения типа неидеального контакта. Показано, что при определённых условиях на данные решение задачи существует и единственно. Метод является конструктивным, и на основе предложенного подхода возможно построение численных методов решения задачи. Доказательство использует априорные оценки и теорему о неподвижной точке.
Исследуются вопросы разрешимости нелинейных обратных задач с зависящим от времени неизвестным элементом для эволюционных уравнений в банаховых пространствах с производными Герасимова - Капуто. Получена теорема о существовании единственного гладкого решения нелинейной задачи для разрешённого относительно старшей дробной производной уравнения с ограниченным оператором в линейной части. Она использована при исследовании вырожденных эволюционных уравнений при условии p-ограниченности пары операторов в линейной части уравнения - при старшей производной и при искомой функции. В случае действия нелинейного оператора в подпространство без вырождения доказано существование единственного гладкого решения, а при независимости нелинейного оператора от элементов подпространства вырождения показано существование единственного обобщённого решения. Полученные абстрактные результаты для вырожденных уравнений использованы при исследовании обратной задачи для модифицированной системы уравнений Соболева с неизвестными коэффициентами при младших дробных производных по времени.
Изучены обратные задачи определения вместе с решением вырождающегося дифференциального уравнения с кратными характеристиками также неизвестного коэффициента, задающего внешнее воздействие (свободный член). Характер вырождения в изучаемом уравнении, а также вид неизвестного коэффициента определяются временн´ой переменной. Для изучаемых задач доказываются теоремы существования и единственности регулярных решений - решений, имеющих все обобщённые по С. Л. Соболеву производные, входящие в уравнение.