Архив статей журнала
Обоснована новая модель пластины Тимошенко, которая может контактировать боковой поверхностью или нижней кромкой лицевой поверхности (относительно выбранной системы координат) с жёстким препятствием заданной конфигурации. Недеформируемое препятствие задаётся цилиндрической поверхностью, образующие которой перпендикулярны срединной плоскости пластины, а также частью плоскости, которая параллельна срединной плоскости. Соответствующая вариационная задача формулируется в виде минимизации функционала энергии над невыпуклым множеством допустимых перемещений. Множество допустимых перемещений задаётся с учётом условия закрепления и условия непроникания. Условие непроникания задаётся в виде системы неравенств, описывающих два случая возможных контактов пластины и жёсткого препятствия. Именно эти два случая соответствуют разным типам контакта: боковым краем пластины и нижней кромкой пластины. Доказано существование решения задачи. В частном случае, когда зоны контакта заранее известны, получена эквивалентная дифференциальная постановка в предположении дополнительной регулярности решения вариационной задачи.
Исследуется задача равновесия пластины под действием внешних сил. Предполагается, что пластина содержит плоское жёсткое включение. Вдоль части жёсткого включения расположена сквозная трещина. На трещине задаются нелинейные краевые условия типа неравенств, которые описывают взаимное непроникание берегов трещины. Задача ставится в виде вариационного неравенства. В предположении достаточной гладкости решения предложена дифференциальная постановка задачи. Обоснована эквивалентность двух постановок: дифференциальной и вариационной. Также рассмотрена контактная задача для упругой пластины с плоским жёстким включением. Приведены дифференциальная и вариационная формулировки задачи, доказаны существование и единственность решения задачи.
Обоснована новая модель трансверсально изотропной пластины Тимошенко, которая может контактировать боковой поверхностью с жёстким препятствием по полосе заданной ширины. Недеформируемое препятствие ограничивает перемещения и углы поворота пластины по внешней боковой кромке. Препятствие задаётся цилиндрической поверхностью, образующие которой перпендикулярны срединной плоскости пластины. При этом препятствие соприкасается в исходном состоянии с пластиной по полосе заданной ширины. Задача формулируется в вариационном виде - ищется минимум функционала энергии над выпуклым множеством допустимых перемещений. Множество допустимых перемещений задаётся в подходящем пространстве Соболева с учётом условия закрепления и условия непроникания. Условие непроникания имеет вид системы двух неравенств. Доказаны существование и единственность решения задачи. Найдена эквивалентная дифференциальная постановка в предположении дополнительной регулярности решения вариационной задачи. Установлена качественная связь предложенной модели с ранее изученной задачей, в которой пластина контактирует по всей ширине боковой поверхности.