Архив статей журнала
Цель работы — выявление характера изменения земель, окружающих вулканическую постройку Эбеко в результате негативного воздействия характерных опасных процессов. В статье приведены данные, полученные в ходе исследования распространения вулканогенных отложений на территории, прилегающей к эруптивному центру, и картографические материалы, полученные на основе дешифрирования космических снимков и цифровой аэрофотосъемки (ЦАФС).
В работе использовались материалы полевых исследований вулканогенных отложений, космические снимки, данные ЦАФС. Составление и оформление картографических материалов выполнялось с применением ГИС1 -технологий и компьютерных методов анализа. Дешифрирование материалов космических съемок и ЦАФС, а также анализ информации об изменениях состояния вулкана Эбеко позволили выделить подзоны вулканического воздействия на земли, расположенные на склонах вулканической постройки и вблизи нее.
Проверка достоверности выполнена при проведении полевых экспедиционных исследований.
Результаты дешифрирования аэрокосмических снимков позволили на основе определения пространственного распределения отложений определенной размерности выявить подзоны сильного, среднего и слабого воздействия на земли, расположенные вокруг вулканической постройки Эбеко, и составить карту вулканоопасности.
В статье рассматриваются вопросы анализа устойчивости геодезических пунктов в пространстве-времени.
Первый пример описывает ситуацию с двумя подвижными реперами в нивелирной сети, мобильность которых определяется надежно. Здесь используется вариант МНК1 -оптимизации коррелированных парных данных.
Второй пример иллюстрирует более сложную геопространственную ситуацию на объекте, подверженном деформационным процессам. Этот пример, использующий данные ГНСС2 -наблюдений, анализируется как свободная сеть.
В такой ситуации наглядно проявляются достоинства синтезированного варианта параметрической версии (СВПВ) МНК-оптимизации ГНСС-наблюдений. Центральный блок гиперматрицы коэффициентов СВПВ представляет собой стабилизирующее слагаемое, обеспечивающее регуляризацию решения по А. Н. Тихонову. Кроме того, в теле обратной матрицы коэффициентов автоматически вычисляются элементы регуляризованной псевдообратной матрицы А+ для исходной матрицы плана А. С помощью псевдообратной матрицы А+ вычисляется ранг исходной матрицы А, по которому определяется ее дефект d, используемый при вычислении корректного значения безразмерного масштабного показателя точности данных μ2.
Моделирование деформаций для второго примера потребовало дополнительно воспользоваться переходом от приращений геоцентрических координат к топоцентрическим.
В результате были получены два массива точек фрагмента ГНСС-сети, сопровождаемых соответствующими ковариационными матрицами координат. По этим коррелированным массивам выполнялся их анализ, подтвердивший, что деформация имела место именно на том пункте, где она и моделировалась.