Архив статей журнала

Современные методы предотвращения DDoS-атак и защиты веб-серверов (2025)
Выпуск: № 2 (2025)
Авторы: Козырева Надежда Ивановна, Мухтулов Михаил Олегович, Ершов Сергей Александрович, Новосельцева София Владимировна, Ахмадуллин Динар Айратович

Объектом исследования являются веб-серверы и их поведение в условиях высокоинтенсивных распределённых атак типа «отказ в обслуживании» (DDoS), нарушающих доступность сервисов и устойчивость инфраструктур. В качестве предмета исследования рассматриваются современные методы защиты серверных приложений от DDoS-угроз, включая анализ трафика, фильтрацию по частоте запросов, межсетевые экраны (файрволы) и облачные решения. Подробно анализируется эффективность различных технологий защиты, таких как Rate Limiting, ModSecurity, Google Cloud Armor и Cloudflare, а также их интеграция с традиционными средствами - межсетевыми экранами, системами предотвращения вторжений (IPS) и прокси-серверами. В рамках исследования разработан тестовый сервер на языке Go, имитирующий поведение реального веб-приложения с логированием и сбором статистики. Для моделирования DDoS-атак использован инструмент MHDDoS, обеспечивающий широкое покрытие типов угроз: от UDP и SYN Flood до HTTP Flood и Slowloris. Методы исследования включают эмуляцию атак на сетевом и прикладном уровнях трафика, нагрузочное тестирование, сбор метрик (процент заблокированных запросов, среднее время отклика, нагрузка на CPU и RAM) и сравнительный анализ эффективности решений. Научная новизна исследования заключается в разработке и применении экспериментальной модели имитации DDoS-атак с использованием специализированного Go-сервера, что позволило в реалистичных условиях оценить эффективность современных локальных и облачных средств защиты. Анализ реальных кейсов демонстрирует эффективность адаптивных стратегий против современных сложносоставных атак. Выводы подчёркивают необходимость активного подхода к безопасности, учитывающего как технологические, так и организационные меры защиты. Полученные результаты имеют практическую ценность для специалистов по кибербезопасности, системных администраторов и разработчиков защитных решений, предоставляя им методическую основу для создания устойчивых к DDoS веб-инфраструктур. Работа также обозначает перспективные направления для дальнейших исследований в области интеллектуальных систем обнаружения и нейтрализации атак.

Сохранить в закладках
Разработка проекта PLAY VISION AI для просмотра спортивных матчей с помощью искусственного интеллекта (2025)
Выпуск: № 2 (2025)
Авторы: Ковалев Сергей Васильевич, Смирнова Татьяна Николаевна, Зверев Роман Евгеньевич, Раков Иван Витальевич

С развитием цифровых технологий, искусственного интеллекта и больших данных, спортивная индустрия сталкивается с растущей потребностью в продвинутых аналитических инструментах. В футболе, где стратегическое и тактическое планирование играют ключевую роль, применение технологий компьютерного зрения и машинного обучения для анализа игр становится не просто трендом, а необходимостью для поддержания конкурентоспособности. Использование компьютерного зрения и машинного обучения в спортивной аналитике позволяет автоматически извлекать значимые данные из видео матчей, что значительно повышает скорость и точность анализа по сравнению с традиционными методами. Такие технологии могут предоставить тренерам детальные отчеты о движениях, позиционировании и тактике игроков в реальном времени. Целью является создание системы, которая позволит проводить комплексный анализ футбольных матчей с использованием последних достижений в области искусственного интеллекта и компьютерного зрения. Основной метод - обзор и анализ публикаций по теме исследования; анализ современных технологий, позволяющих автоматически обрабатывать видеоданные. Основная методология - концепция разработки проекта PLAY VISION AI как способ просмотра спортивных матчей с помощью искусственного интеллекта для оценки эффективности игровых стратегий. Актуальность данной работы обусловлена максимальной модификацией современных технических средств для улучшения аналитических возможностей в спорте. Авторами разработаны алгоритмы для калибровки и коррекции искажений видео, полученного с футбольных матчей; разработаны методы детекции и трекинга опорных точек и игроков на видео; реализованы алгоритмы для сопоставления изображений с реальными координатами на поле, а также определения позиций игроков; выполнена интеграция разработанных методов в единую систему с интерфейсом для конечных пользователей. Разработанная система PLAY VISION AI обеспечит тренерам и аналитикам инструменты для оценки эффективности игровых стратегий и подготовки к предстоящим матчам. Также будет способствовать дальнейшему развитию технологий анализа в спорте, открывая новые перспективы для исследований и практического применения.

Сохранить в закладках