Архив статей журнала

Интеллектуальная инфраструктура автоматизированного управления и интероперабельности микросервисов в облачных средах (2025)
Выпуск: № 2 (2025)
Авторы: Рогов Дмитрий Вадимович, Алпатов Алексей Николаевич

В условиях стремительного роста масштабов и сложности информационных систем, вопросы эффективной интеграции и сопровождения микросервисных архитектур становятся всё более актуальными. Одной из ключевых проблем является обеспечение интероперабельности программных компонентов, что предполагает возможность надёжного обмена данными и совместного использования информации между различными сервисами, реализованными с использованием разнородных технологий, протоколов и форматов данных. В данной работе предметом исследования выступает формализация и построение интеллектуальной системы, обеспечивающей интероперабельность микросервисных компонентов в облачной инфраструктуре. Предложен формализованный подход, основанный на графовых, категориальных и алгебраических моделях, позволяющий строго описывать маршруты передачи данных, условия совместимости интерфейсов и процедуру автоматизированного согласования форматов взаимодействия. Введена операция согласования интерфейсов, обеспечивающая выявление необходимости использования адаптеров и преобразователей для интеграции различных сервисов. Особое внимание уделяется задаче построения универсального интерфейса, через который возможна маршрутизация любых потоков данных, что значительно упрощает процедуру масштабирования и доработки микросервисной системы. Разработанная архитектура системы охватывает этапы создания, публикации и развертывания контейнерных микросервисов, автоматическую проверку маршрутов передачи данных, а также динамическое управление состоянием сервисов на основе прогнозирования нагрузки с помощью моделей искусственного интеллекта. Применение предложенной методики позволяет существенно повысить гибкость, надёжность и масштабируемость инфраструктуры, снизить эксплуатационные затраты, а также автоматизировать процессы поддержки и интеграции новых компонентов. Предложенное решение основывается на формализованном подходе к обеспечению интероперабельности микросервисных компонентов в облачной инфраструктуре. В качестве основы используется графовая и категорная модель, позволяющая строго определить маршруты передачи данных и процедуры согласования интерфейсов между различными сервисами. Для унификации взаимодействия и повышения гибкости системы введена операция согласования интерфейсов, а также реализована возможность автоматизированного выявления необходимости применения адаптеров и преобразователей данных. Разработанный алгоритм интеллектуального прогнозирования нагрузки на сервисы позволяет динамически управлять состоянием компонентов и оперативно адаптировать инфраструктуру к изменяющимся условиям эксплуатации.

Сохранить в закладках
Интеллектуальная система мониторинга и адаптации маршрута беспилотных летательных аппаратов на основе нейросетевого анализа объектов риска (2025)
Выпуск: № 1 (2025)
Авторы: Сергеев Дмитрий Анатольевич, Родионов Дмитрий Григорьевич, Поляков Прохор, Голиков Глеб Игоревич, Старченкова Олеся Дмитриевна, Дмитриев Николай, Конников Евгений Александрович

Исследуется интеллектуальная система мониторинга и адаптации маршрута беспилотных летательных аппаратов (БПЛА) на основе нейросетевого анализа объектов риска. Рассматриваются алгоритмы автономной навигации, обеспечивающие анализ внешней среды и оперативную корректировку траектории полёта с учётом потенциальных угроз. Оцениваются возможности применения машинного зрения, нейросетевых алгоритмов, методов предобработки данных, детектирования объектов, семантической сегментации, алгоритмов траекторного планирования, предиктивного управления и адаптивной оптимизации маршрутов для идентификации препятствий, движущихся объектов и зон ограничения полётов. Анализируется роль интеллектуальных систем управления в архитектуре БПЛА, их влияние на повышение автономности, устойчивости и эффективности выполнения задач в динамически изменяющихся условиях. Предлагаемые решения ориентированы на снижение рисков, связанных с нештатными ситуациями, за счёт внедрения адаптивных стратегий управления полётом. Применяются методы системного анализа, компьютерного зрения и машинного обучения, включая свёрточные нейросети, алгоритмы предобработки изображений, фильтрации и сегментации данных, а также анализ сенсорных показателей. Оценка эффективности реализована посредством моделирования траекторий движения, тестирования алгоритмов идентификации угроз и анализа параметров устойчивости маршрутов БПЛА. Научная новизна заключается в разработке интегрированной системы интеллектуальной корректировки маршрута БПЛА, основанной на применении нейросетевых методов классификации объектов и адаптивных алгоритмов планирования траекторий. Разработаны механизмы предиктивного анализа рисков, обеспечивающие автоматическую корректировку маршрута при обнаружении препятствий, неблагоприятных погодных условий и зон ограниченного доступа. Предложенная архитектура управления сочетает технологии машинного зрения, анализа потоков данных и автоматизированного принятия решений, а также использует методы динамической маршрутизации, алгоритмы корректировки полёта в реальном времени и стратегии предотвращения столкновений. Такой подход обеспечивает повышение уровня автономности работы дронов. Разработанные алгоритмы интеллектуальной навигации могут быть внедрены в современные системы автономного управления БПЛА, обеспечивая адаптацию к динамическим условиям и повышение эффективности выполнения задач в различных сферах, включая оборонные и промышленные применения.

Сохранить в закладках