Рассматриваются системы линейных автономных функционально-дифференциальных уравнений запаздывающего типа, причём коэффициенты в системе могут быть любого знака. Указанные системы ФДУ включают в себя уравнения с различными видами последействия, в том числе сосредоточенные и распределённые запаздывания. Цель настоящей работы – получение новых эффективных признаков экспоненциальной устойчивости для систем линейных автономных ФДУ запаздывающего типа. Исследование базируется на идее построения вспомогательной системы, так называемой «системы сравнения», которая, с одной стороны, имеет более простую структуру, а с другой стороны, те же асимптотические свойства, что и исходная система. Система сравнения также может содержать запаздывания, причём не только сосредоточенные, но и распределённые. Система сравнения строится таким образом, что все компоненты её фундаментальной матрицы неотрицательны. Так как матрицы коэффициентов в системе сравнения являются диагональными, то её можно рассматривать как совокупность независимых скалярных уравнений. Для фундаментальных решений таких уравнений в работах В. В. Малыгиной и К. М. Чудинова были получены точные двусторонние экспоненциальные оценки, также дающие экспоненциальную оценку для фундаментальной матрицы системы сравнения. Для автономных ФДУ запаздывающего типа, как известно, стремление к нулю всегда происходит по экспоненциальному закону, что означает существование таких положительных постоянных N и α, что ( ) t x t Ne−α ≤. Однако без указания оценок на коэффициент N и показатель экспоненты α или алгоритма их эффективного вычисления задача об экспоненциальной устойчивости не может считаться до конца решённой. В предлагаемом исследовании наряду с новыми признаками экспоненциальной устойчивости найдены оценки скорости стремления компонент фундаментальной матрицы изучаемой системы линейных автономных ФДУ к нулю. Эффективность полученных результатов иллюстрируется несколькими примерами, в которых в качестве систем сравнения выбираются ФДУ с различными видами последействия
Рассматривается функционально-дифференциальное уравнение нейтрального типа с двумя несоизмеримыми запаздываниями при производной и исследуются вопросы его устойчивости, изучается обратимость оператора при производной в лебеговых пространствах L p и исследуется расположение корней его характеристического уравнения на комплексной плоскости. Для определения обратимости оператора при производной найден спектр оператора S внутренней суперпозиции, а также дано его описание в терминах коэффициентов исходного уравнения. Полученное описание спектра позволяет сформулировать условия, при которых обратим оператор при производной. В свою очередь, обратимость оператора при производной даёт возможность найти критерии экспоненциальной устойчивости и неустойчивости. Установлена связь между значениями коэффициентов оператора S, типом устойчивости исходного уравнения, обратимостью оператора I S− в любом из лебеговых функциональных пространств и расположением корней характеристического уравнения. Показано, что наличие корней характеристического уравнения справа от мнимой оси равносильно неустойчивости уравнения нейтрального типа и необратимости оператора при производной. Если же все корни характеристического уравнения лежат слева от мнимой оси и отделены от неё, то оператор при производной обратим, а уравнение нейтрального типа экспоненциально устойчиво. Эти условия оказались эффективно проверяемыми в терминах коэффициентов исходного уравнения. Был также описан «критический» случай, при котором корни характеристического уравнения лежат слева от мнимой оси, но не отделены от неё, то есть существует вертикальная цепь корней, приближающаяся к мнимой оси на сколь угодно близкое расстояние. В этом случае оператор при производной необратим, а уравнение нейтрального типа не может быть экспоненциально устойчивым
Исследуется устойчивость линейного автономного разностного уравнения с двумя комплексными коэффициентами и различными запаздываниями. Отправной точкой исследования является теорема Шура – Кона о расположении корней характеристического уравнения на комплексной плоскости относительно единичного круга. Для построения области экспоненциальной устойчивости исследуемого уравнения в пространстве параметров используется метод D-разбиений, состоящий в построении таких поверхностей в фазовом пространстве, что при переходе точки пространства через эти поверхности изменяется число корней соответствующего точке характеристического уравнения, находящихся вне единичного круга комплексной плоскости. Область, которой соответствует нулевое число таких корней, является областью устойчивости уравнения. Эта схема реализована для указанного разностного уравнения: найдены геометрические критерии устойчивости и описаны области экспоненциальной устойчивости в четырехмерном пространстве коэффициентов. Отдельно изучена равномерная устойчивость, областью которой является область экспоненциальной устойчивости, дополненная частью границы. Для точного описания области равномерной устойчивости потребовалось описание «кривой кратности», все точки которой соответствуют кратным корням характеристического уравнения. Полученные результаты могут быть применены к исследованию процессов в физике, технике, экономике, биологии, при моделировании которых используются дискретные модели в виде разностных уравнений
Исследована устойчивость по начальной функции линейного автономного функционально-дифференциального уравнения нейтрального типа. Анализируется устойчивость по Ляпунову, асимптотическая и сильная асимптотическая, а также экспоненциальная устойчивость уравнения и их взаимосвязь. Определения всех типов устойчивости формулируются в терминах функции Коши - функции, позволяющей в явном виде записать общее решение уравнения. Основное внимание уделено исследованию устойчивости по начальной функции из пространств суммируемых функций. Используется известное представление решения функционально-дифференциального уравнения с помощью интегрального оператора, ядром которого является функция Коши. Вопросы устойчивости исследуются для уравнения с кратным запаздыванием при производной и распределенным запаздыванием при неизвестной функции. Показано, что для такого уравнения сохраняются все свойства, ранее доказанные для уравнения с кратным запаздыванием при неизвестной функции. А именно показано, что сильная асимптотическая устойчивость рассматриваемого уравнения с начальной функцией из пространства L 1 эквивалента экспоненциальной оценки функции Коши, кроме того, из любого из этих свойств следует экспоненциальная устойчивость по начальной функции в любом из пространств L p при 1≤p≤∞. При этом, как и для уравнения с кратными запаздываниями, сильная асимптотическая устойчивость в пространстве L p для некоторого p>1 может не быть равносильной экспоненциальной устойчивости.