Рассматривается функционально-дифференциальное уравнение нейтрального типа с двумя несоизмеримыми запаздываниями при производной и исследуются вопросы его устойчивости, изучается обратимость оператора при производной в лебеговых пространствах L p и исследуется расположение корней его характеристического уравнения на комплексной плоскости. Для определения обратимости оператора при производной найден спектр оператора S внутренней суперпозиции, а также дано его описание в терминах коэффициентов исходного уравнения. Полученное описание спектра позволяет сформулировать условия, при которых обратим оператор при производной. В свою очередь, обратимость оператора при производной даёт возможность найти критерии экспоненциальной устойчивости и неустойчивости. Установлена связь между значениями коэффициентов оператора S, типом устойчивости исходного уравнения, обратимостью оператора I S− в любом из лебеговых функциональных пространств и расположением корней характеристического уравнения. Показано, что наличие корней характеристического уравнения справа от мнимой оси равносильно неустойчивости уравнения нейтрального типа и необратимости оператора при производной. Если же все корни характеристического уравнения лежат слева от мнимой оси и отделены от неё, то оператор при производной обратим, а уравнение нейтрального типа экспоненциально устойчиво. Эти условия оказались эффективно проверяемыми в терминах коэффициентов исходного уравнения. Был также описан «критический» случай, при котором корни характеристического уравнения лежат слева от мнимой оси, но не отделены от неё, то есть существует вертикальная цепь корней, приближающаяся к мнимой оси на сколь угодно близкое расстояние. В этом случае оператор при производной необратим, а уравнение нейтрального типа не может быть экспоненциально устойчивым
Рассматриваются линейные функционально-дифференциальные уравнения, которые могут служить основой для современного моделирования в различных областях науки, техники, экономики, в том числе при исследовании нейронных сетей и машинного обучения. Эти уравнения описывают широкий класс процессов, где скорость изменения некоторой величины зависит не только от значений в текущий момент времени, но и от значений в прошлом и будущем. Целью работы является получение точных условий на параметры уравнения, при выполнении которых уравнение имеет решение при любой суммируемой правой части, что отражает существование моделируемого объекта при разумно большом классе внешних воздействий. Показано, что для установления факта всюду разрешимости функциональнодифференциального уравнения первого порядка достаточно исследовать только три краевых задачи: периодическую краевую задачу, задачу Коши и задачу с краевым условием на правом конце. В терминах значений норм положительной и отрицательной частей функционального оператора получены необходимые и достаточные условия того, что линейное функционально-дифференциальное уравнение первого порядка является всюду разрешимым. Если эти условия на нормы не выполнены, то найдется такой оператор с данными нормами положительной и отрицательной частей, что уравнение не будет иметь решений при некоторых суммируемых правых частях. Разработанные методы исследования опираются на аппарат теории функционально-дифференциальных уравнений и могут быть применены для изучения других классов функциональных уравнений, в частности, для уравнений высших порядков. Полученные результаты могут быть использованы для анализа и моделирования различных динамических систем, где присутствуют запаздывания и (или) опережения. Эти запаздывания и опережения могут описываться наиболее общими функциональными операторами, включающими и положительную, и отрицательную части, что соответствует рассмотрению систем и с положительной, и с отрицательной обратной связью. Это позволяет более точно описывать и прогнозировать поведение таких систем.
В работе рассматривается класс линейных автономных дифференциальных уравнений нейтрального типа. Изучаемое уравнение, с одной стороны, возникает в различных прикладных задачах, таких как динамика популяции клеток, движение плоских упругих плит с учетом трения, исследование дефектов с помощью ультразвука. С другой стороны, это уравнение обладает большим разнообразием асимптотических свойств решений и поэтому интересно также с теоретической точки зрения, что подтверждается значительным количеством чисто теоретических исследований. Исследуемое уравнение являет собой удачный пример объекта, который достаточно прост для того, чтобы удалось получить эффективные признаки устойчивости, и в то же время достаточно сложен, чтобы в нем проявилось все разнообразие асимптотических свойств решений автономных уравнений нейтрального типа. Исследование устойчивости рассматриваемого уравнения сводится к изучению асимптотических свойств его фундаментального решения и функции Коши. Известен критерий экспоненциальной устойчивости изучаемого уравнения и построена его область устойчивости в пространстве коэффициентов. В настоящей работе исследуется положительность фундаментального решения и функции Коши данного уравнения, а также устанавливаются двусторонние экспоненциальные оценки указанных функций. Для этого известная лемма о дифференциальном неравенстве обобщается на линейное автономное дифференциальное уравнение нейтрального типа. Далее доказывается, что если рассматриваемое уравнение экспоненциально устойчиво, а его характеристическая функция имеет хотя бы один вещественный корень, то его фундаментальное решение и функция Коши положительны на положительной полуоси. Этому условию придается геометрический вид – описывается соответствующая область в пространстве параметров уравнения. На основе положительности фундаментального решения и функции Коши строятся их двусторонние экспоненциальные оценки. Показатели экспоненты и коэффициенты в полученных оценках фундаментального решения и функции Коши являются точными. Эффективность установленных в статье результатов иллюстрируется примером.
Исследована устойчивость по начальной функции линейного автономного функционально-дифференциального уравнения нейтрального типа. Анализируется устойчивость по Ляпунову, асимптотическая и сильная асимптотическая, а также экспоненциальная устойчивость уравнения и их взаимосвязь. Определения всех типов устойчивости формулируются в терминах функции Коши - функции, позволяющей в явном виде записать общее решение уравнения. Основное внимание уделено исследованию устойчивости по начальной функции из пространств суммируемых функций. Используется известное представление решения функционально-дифференциального уравнения с помощью интегрального оператора, ядром которого является функция Коши. Вопросы устойчивости исследуются для уравнения с кратным запаздыванием при производной и распределенным запаздыванием при неизвестной функции. Показано, что для такого уравнения сохраняются все свойства, ранее доказанные для уравнения с кратным запаздыванием при неизвестной функции. А именно показано, что сильная асимптотическая устойчивость рассматриваемого уравнения с начальной функцией из пространства L 1 эквивалента экспоненциальной оценки функции Коши, кроме того, из любого из этих свойств следует экспоненциальная устойчивость по начальной функции в любом из пространств L p при 1≤p≤∞. При этом, как и для уравнения с кратными запаздываниями, сильная асимптотическая устойчивость в пространстве L p для некоторого p>1 может не быть равносильной экспоненциальной устойчивости.