Представлены результаты исследований микроструктуры, микротвердости, микрогеометрии поверхности лазерного реза наплавленной быстрорежущей стали марки Р9М4К8 после алмазного выглаживания. Показано, что шероховатость поверхности лазерного реза уменьшается в 3…4 раза, что позволяет получать рабочую поверхность без последующего механического шлифования. Отмечено, что алмазное выглаживание приводит к измельчению микроструктуры, повышению микротвердости стали до 9 700 ± 130 МПа.
Методом порошковой лазерной наплавки получено металлокерамическое покрытие NiCrBSi‒WC на конструкционной стали 40Х. Показано, что при наплавке высоколегированной порошковой смеси с помощью многоканального лазера формируется практически беспористое покрытие, обеспечивается металлургическое сплавление с основой. Отмечено, что линия сплавления однородна по строению, и это подтверждает высокую однородность интегрального тепловложения во время наплавки данным типом лазера. Установлено, что благодаря высоким скоростям нагрева и охлаждения расплава при порошковой лазерной наплавке растворение карбидов WC в ванне расплава незначительное. Выделение хрупкой фазы на границе карбидметаллическая матрица не выявлено
Исследованы микроструктура, химический и фазовый состав заготовок серого чугуна для стеклоформ. Обоснована необходимость контроля фазового состава чугуна и формирования отдельных структурных составляющих в процессе послойного затвердевания отливки для обеспечения повышенных эксплуатационных свойств деталей формокомплекта, работающих в тяжелых условиях циклических термических нагрузок и абразивного износа.
Проведены металлографические исследования конструкционной стали марки 30ХН3А в зоне лазерной закалки. Термоупрочнение образцов выполняли с помощью непрерывного излучения многоканального СО2-лазера на различных режимах. Показано, что данный тип лазеров, в отличие от однолучевых, обладает однородностью тепловложения по ширине полосы упрочнения. В зоне лазерной закалки на оптимальном режиме сталь имеет структуру мартенсита с микротвердостью ~7 500 МПа. Глубина упрочненного слоя составляет ~1,3 мм. Показана эффективность применения многоканального СО2-лазера для закалки конструкционной стали.