Архив статей

ВЛИЯНИЕ НЕФТЕСОЛЕВОГО ЗАГРЯЗНЕНИЯ НА ТЕПЛОФИЗИЧЕСКИЕ СВОЙСТВА ГРУНТОВ СЛОЯ СЕЗОННОГО ОТТАИВАНИЯ (2025)
Выпуск: № 4 (2025)
Авторы: ГРЕЧИЩЕВА ЭРИКА СТАНИСЛАВОВНА, Буханов Борис Александрович, МОТЕНКО РИММА ГРИГОРЬЕВНА, АЛЕКСЕЕВ АНДРЕЙ ГРИГОРЬЕВИЧ

Цель. Экспериментальное исследование влияния нефтесолевого загрязнения на содержание незамерзшей воды, теплофизические свойства и температурный режим мерзлых грунтов. Объектом исследования являлись модельные грунты в ряду песок- супесь-суглинок-глина с нефтесолевым загрязнением. Исследования проводились для «чистых», засоленных и загрязненных нефтью грунтов, а также грунтов с нефтесолевым загрязнением.

Материалы и методы. Определение содержания незамерзшей воды проводилось с использованием как стандартных контактного и криоскопического методов, так и метода ядерно-магнитного резонанса. Исследование коэффициента теплопроводности и удельной теплоемкости осуществлялось методом монотонного разогрева–охлаждения.

Содержание незамерзшей воды и теплофизические характеристики в широком температурном диапазоне для грунтов с нефтесолевым загрязнением исследованы впервые. При исследовании получены не только закономерности изменения свойств, но также выявлены ограничения методов. Установлено, что контактный метод определения содержания незамерзшей воды не может применяться при исследовании грунтов, содержащих нефть, а метод монотонного разогрева имеет серьезные ограничения применительно к сильнозасоленным грунтам.

Результаты и выводы. Полученные результаты показали, что влияние нефтесолевого загрязнения на содержание незамерзшей воды в целом идентично влиянию засоленности. Результаты исследования теплоемкости показали, что влияние нефтесолевого загрязнения заключается в суммарном влиянии нефти и соли и приводит к повышению (до 35 %) теплоемкости в талом и мерзлом состоянии за счет замены в поровом пространстве менее теплоемкого воздуха более теплоемкой нефтью, а также за счет увеличения количества незамерзшей воды в мерзлом грунте. Влияние нефтесолевого загрязнения на коэффициент теплопроводности идентично влиянию засоления за счет дополнительной коагуляции микроагрегатов.

Оценка влияния нефтесолевого загрязнения на температурный режим мерзлых грунтов с учетом изменения характеристик грунтов слоя сезонного оттаивания и поверхностных условий показала, что происходит значительное (до 2 раз) увеличение глубины сезонного оттаивания и среднегодовой температуры грунтов (до 1,5 °С), что может способствовать снижению несущей способности грунтового основания, в том числе при сейсмических воздействиях.

Сохранить в закладках
Применение методики дискретной математики для построения графовой модели при расчете железобетонных конструкций (2025)
Выпуск: № 4 (2025)
Авторы: Снимщиков Сергей Валентинович, Саврасов Иван Петрович, Квасников Александр Анатольевич

Введение. В статье рассматривается применение методов дискретной математики, в частности теории графов, для формализации и оптимизации расчета железобетонных конструкций. Традиционные методы конечных элементов дополняются графовым представлением структуры, что обеспечивает автоматическую генерацию матриц жесткости и нагрузок, а также интеграцию с машинопонимаемыми стандартами.

Материалы и методы. Разработан подход, в котором узлы конструкции соответствуют вершинам графа, а элементы (балки, колонны, плиты) – ребрам. Локальные матрицы жесткости формируются по классическим формулам, после чего собираются в глобальную матрицу через преобразования, аналогичные преобразованиям для матрицы Лапласа взвешенного графа. Для анализа применяются алгоритмы поиска путей, центральности, минимальных остовных деревьев и потоковые методы.

Результаты. Показана корректность и эффективность построения графовой модели на примере рамы в одной плоскости. Полученная глобальная матрица жесткости совпадает по структуре с матрицей Лапласа графа и обеспечивает ускорение сборки расчетной модели. Алгоритмические методы позволяют выявлять критические узлы и оптимизировать структуру.

Обсуждение. Графово-дискретный подход демонстрирует высокую совместимость с BIM и GNN, облегчает автоматизацию проектирования и интеграцию с цифровыми двойниками. Дальнейшие исследования могут быть направлены на масштабирование в пространственных каркасах и адаптацию под машинное обучение для прогнозирования отказов.

Выводы. Предложен графово-дискретный подход к расчету железобетонных конструкций, обеспечивающий автоматизацию формирования расчетной модели. Структура глобальной матрицы жесткости соответствует матрице Лапласа взвешенного графа. Применение алгоритмов теории графов позволяет анализировать нагрузку, выявлять критические узлы и оптимизировать структуру. Метод совместим с BIM, GNN и машинопонимаемыми стандартами, что облегчает интеграцию в цифровое проектирование.

Сохранить в закладках
← назад вперёд →