В данной статье представлена содержательная постановка задачи математического моделирования оптимального управления нагревом «термически тонких» и «термически массивных» тел в печи, обеспечивающего минимум по критерию расхода топлива. Рассматривается задача нагрева термически «тонкого тела», позволяющая при заданных условиях конвективного теплообмена в печи, времени нагрева и вида топлива выбирать такой температурный режим, при котором заданная конечная температура достигается при минимальном расходе топлива. Рассмотренные модели распространяются на камерные печи с учетом рассредоточенного подвода топлива и отвода дыма. Установлено, что при возрастании мощности печи оптимальное время нагрева уменьшается и скоростной нагрев «термически тонких» тел наиболее выгоден при большой удельной мощности холостого хода печей, например секционных. Обнаружено, что при отсутствии ограничений оптимальная температура газов достигается при постоянной тепловой мощности, а затем нагрев осуществляется при предельно допустимой температуре газов. Представлена вычислительная методика и процедура расчета нагрева «термически массивных» тел, состоящая из двух периодов: нагрева при оптимальной постоянной тепловой мощности до момента достижения заданной конечной среднеобъемной температуры с выдержкой при постоянном теплосодержании, с учетом удельного расхода топлива, что является современным инструментом для цифровизации расчета энергоемкого процесса нагрева рудного материала на предприятиях горнообогатительного комплекса промышленности. Представлены численные процедуры по определению оптимальной тепловой мощности в регенеративных и рекуперативных нагревательных колодцах с учетом веса исследуемых образцов, применяемого топлива и мощности холостого хода. Анализ представленных вычислительных процедур использования топлива позволяет выявить новые подходы к исследованию закономерностей между характеристиками нагрева рудного сырья, которые могут быть полезными при конструировании печей, нормировании расхода топлива и совершенствовании систем управления теплотехнологическим оборудованием. Они позволят оценить потенциальный резерв экономии топлива в направлении изменения режима работы печи в сторону оптимизации. Работа выполнена в рамках государственного задания, проект № FSWF-2023-0012.
Целью данного исследования являлось изучение алгоритмов расчета калориметрической температуры горения различных видов в условиях доменной плавки. В работе представлены результаты численного моделирования процессов сгорания, включая сравнительный анализ различных типов топлива и динамику горения в доменной печи. Выполнен расчёт низшей температуры сгорания топлива, при которой происходит преобразование продуктов горения в газообразное состояние и их удаление вместе с дымом. На основании имеющихся данных определены коэффициенты перерасчёта расхода воздуха, требующегося для полного сгорания единицы топлива. Установлено, что в условиях дефицита кислорода происходит неполное сгорание топлива, что приводит к его перерасходу и снижению экономических показателей, это актуально для доменных печей, которые составляют до 70% от общего расхода теплоносителей на металлургических предприятиях с полным циклом. Выявлена целесообразность применения попутного нефтяного газа в доменных печах предприятий черной металлургии с точки зрения повышения энергоэффективности и экологичности. Для определения калориметрической температуры горения топлива произведено сравнение численных методов итерации и интерполяции с созданием математической модели, которая позволяет повысить экономические показатели за счёт точности расчетов соотношения температуры, количества топлива и расхода воздуха в зоне горения. На основании эксперимента научно обоснована целесообразность применения газообразного топлива вместо твёрдого или жидкого. Разработанный численный метод реализован в комплексе программ для проведения вычислительного эксперимента с применением современных компьютерных технологий. Программа разработана с применением языка программирования С++ и кроссплатформенной среды Visual Studio, что гарантирует её работу на любой операционной системе. Наличие в программе существующей базы данных, содержащих основные химические показатели газообразного, жидкого или твёрдого топлива, позволяет автоматизировать процесс расчёта.
В настоящем исследовании проводится анализ специфических свойств и технологических параметров газовых выбросов химико-энерготехнологического процесса, с учётом объёма и содержания токсичных компонентов, а также опыта эксплуатации систем очистки газовых выбросов на действующих фосфорных предприятиях. Для очистки газов исследуется трёхступенчатая система аппаратов: ансамбль одиночных циклонов, пенных агрегатов, орошаемых водным раствором едкого натра. Установлено, что циклоны наиболее подходят для сухой очистки газов, а для повышения эффективности очистки их диаметр должен быть не более одного метра. Научно обосновано, что при очистке газов спекания фосфоритового агломерата, объём которых превышает производительность одиночного циклона, следует использовать групповые циклоны – несколько циклонов скомпонованы в одну группу с общим бункером. Предложено, в полтора раза увеличить скорость в циклоне по сравнению с регламентной, что способствует повышению эффективности отделения примесей в очищаемом газе.
В представленном исследовании рассматриваются вопросы очистки газовых выбросов, образующихся в технологической зоне охлаждения агломерационной машины, в процессе спекания рудного фосфатного материала. Приводятся технические решения для очистки газов процесса охлаждения агломерата, с учётом процесса конденсации влаги из газов внутри эксгаустеров. Установлено, что орошение пенных аппаратов, должно осуществляться осуществляется 3% раствором едкого натра, который непрерывно поступает в циркуляционный бак. Выявлены технологические параметры функционирования пенных аппаратов, циклонов, брызгоуловителей.
Научно обоснована последовательность стадий сухой и влажной очистки, газов, формирующихся в технологической зоне охлаждения агломерационной машины, и состоящая из двух параллельно расположенных пенных аппарата. А уловленную пыль в циклонах, следует возвращать в процесс агломерации. Представлена содержательная постановка задачи анализа, технологических особенностей очистки аспирационного воздуха в фосфорном производстве, отличающаяся учётом входной запылённости отделений подготовки шихты и агломерации и среднемедианный диаметр взвешенных частиц, что позволяет использовать пылеосадочные камеры в первой ступени очистки. Научно обоснована мокрая одноступенчатая очистка газов производства фосфора в пенных аппаратах, с учётом опыта работы аналогичных установок и физико-технических свойств газа и пыли. Обнаружено, что пенный аппарат для очистки аспирационного воздуха, должен обладать высокоразвитой поверхностью контакта газовой и жидкой фаз, в отличие от аппарата, рекомендованного для очистки газов процессов спекания и охлаждения фосфоритового агломерата. Предлагается аппаратный инжиниринг для перераспределения газо-воздушных потоков сложной системы очистки аспирационного воздуха фосфорного производства.
Предложена содержательная постановка задачи анализа, сложной иерархической системы очистки сточных вод фосфорного производства, отличающаяся учётом осаждения шлама элементарного фосфора и механических примесей. Разработаны методы принятия решений по очистке загрязненных фосфором и другими токсичными примесями сточных вод до санитарных норм, учитывающие вводимые реагенты, а также повышенную минерализацию воды, которую без многократного разбавления невозможно сбросить в водоём, ни повторно использовать в производстве. Представлен аппаратный инжиниринг сложной системы очистки сточных вод фосфорного производства. Обнаружено, что для механической очистки стоков от элементарного фосфора и взвешенных веществ и для улучшения осаждения частиц применяются в качестве коагулянта железный купорос, действие которого по механизму, аналогично широко применяемому для очистки вод сернокислому алюминию.