Публикации автора

ИССЛЕДОВАНИЕ АЛГОРИТМОВ МАШИННОГО ОБУЧЕНИЯ ДЛЯ ПРОГНОЗИРОВАНИЯ СОСТОЯНИЯ ВИБРАЦИИ КОМПРЕССОРНОЙ УСТАНОВКИ (2025)

Алгоритмы машинного обучения предоставляют широкий спектр возможностей для предиктивного анализа работы технологического оборудования. Они позволяют выявлять скрытые закономерности и прогнозировать будущие события на основе имеющихся данных. Целью данного исследования является анализ и сравнение методов машинного обучения для реализации задач прогнозирования состояния вибрации компрессорной установки. Каждый из методов имеет свои преимущества и ограничения, поэтому выбор конкретного алгоритма зависит от решаемой задачи применительно к характеристикам оборудования и данных. В данной работе исследованы методы машинного обучения для решения задачи регрессии: в случае прогнозирования одномерных рядов использованы методы авторегрессии и авторегрессии со скользящей средней; для прогнозирования многомерных рядов использованы методы линейной регрессии, деревьев решений, случайный лес и градиентный бустинг. Проведен сравнительный анализ методов машинного обучения. Из результатов анализа видно, что для задачи регрессии наилучшими методами являются ансамблевые методы, такие как случайный лес и XGBoost. Применение XGBoost значительно улучшает качество прогнозов, особенно при работе с большим объемом данных. Для моделей AutoReg и ARIMA необходим стационарный временной ряд для получения точных и интерпретируемых результатов. Важно экспериментировать и настраивать параметры для каждого конкретного временного ряда, учитывая такие факторы, как наличие сезонности, тренда и выбросов в данных. При выборе метода прогнозирования необходимо учитывать не только его математические характеристики, но и особенности конкретных данных, на которых он будет применен.

Издание: СОВРЕМЕННЫЕ НАУКОЕМКИЕ ТЕХНОЛОГИИ
Выпуск: № 7 (2025)
Автор(ы): Вотякова Л. Р., Горячев А. С.
Сохранить в закладках