Обсуждены существующие проблемы в применении компьютерного прогнозирования добычи нефти и эффективности проведения геолого-технических мероприятий, связанные, прежде всего, с высокой неопределённостью функциональных зависимостей, наличием большого числа гетерогенных объектов и ограниченным объемом доступной геолого-промысловой информации. В качестве альтернативного варианта геолого-гидродинамического моделирования нефтяных месторождений предложен агент-ориентированный подход, отличающийся тем, что вместо традиционных дифференциальных уравнений в частных производных или искусственных нейронных сетей для прогнозирования добычи нефти и эффективности геолого-технических мероприятий используются агент-ориентированные геолого-гидродинамические модели, которые рассчитываются согласно локальным правилам, непротиворечащим глобальным законам подземной гидравлики, и с использованием каскадов нечетко логических матриц, каждый из которых содержит около тысячи различных параметров. Таким образом, удается создать математический инструмент, приближенный к «сильному» искусственному интеллекту, способный принимать самостоятельные решения и генерировать реалистичные прогнозы.
Идентификаторы и классификаторы
В нефтедобывающих компаниях, как в России, так и за рубежом постоянно делаются прогнозы добычи нефти в виде технологических режимов работы скважин на следующий месяц, а также эффективности проведения на этих скважинах геолого-технических мероприятий (ГТМ) типа гидравлического разрыва пластов, пароциклических обработок и т. д. В данной статье рассматривается агент-ориентированный подход к компьютерному прогнозированию добычи нефти и эффективности ГТМ, а также показана полезность такого подхода для имитации нефтяных месторождений и фильтрационных потоков в них при существующих ограничениях.
Список литературы
1. Акопов А.С. Проблемы управления субъектом ТЭК в современных условиях. - М.: ЦЭМИ РАН, 2004. 247 с. EDN: QQIQWV
2. Акопов А.С., Бекларян А.Л., Хачатрян Н.К. и др. Система прогнозирования динамики добычи нефти с использованием имитационного моделирования // Информационные технологии. 2017, Т. 23, № 6. С. 431-436. EDN: YSLQRD
3. Гутман И.С., Захарян А.З., Урсегов С.О. и др. Новый адаптивный подход к геолого-гидродинамическому моделированию длительно разрабатываемых месторождений и залежей // Нефтяное хозяйство 2017, № 6. С. 78 - 83. EDN: YSMBXV
4. Захарян А.З., Урсегов С.О. От цифровых моделей к математическим: новый взгляд на геолого-гидродинамическое моделирование нефтегазовых месторождений при помощи искусственного интеллекта // Нефтяное хозяйство 2019, № 12. С. 144 - 148. EDN: QDHCQG
5. Колмогоров А.Н. О представлении непрерывных функций нескольких переменных в виде суперпозиции непрерывных функций одного переменного // Доклады АН СССР. 1957, Т. 114, № 5. С. 953 - 956.
6. Колтун А.А., Першин О.Ю., Пономарев А.М. Модели и алгоритмы выбора оптимального множества геолого-технических мероприятий на нефтяном месторождении // Автоматика и телемеханика. 2005, № 8. С. 36 - 45. EDN: NSLBPV
7. Леонтьев Н.Е. Основы теории фильтрации. - М.: МАКС Пресс, 2017. - 88 с. EDN: ZEFAHN
8. Львов Д.С. Экономика развития. - М.: Экзамен, 2002. - 450 с.
9. Макаров В.Л., Бахтизин А.Р., Сушко Е.Д. и др. Создание суперкомпьютерной имитации общества с активными агентами разных типов, связанными иерархически, и ее апробация // Вестник РАН. 2022, № 5. С. 458 - 466. EDN: OTVZYC
10. Мандрик И.Э., Гузеев В.В., Захарян А.З. и др. Нейроинформационные подходы к прогнозированию эффективности гидравлического разрыва пласта // Нефтяное хозяйство. 2009, № 10. С. 18 - 25. EDN: KTNNIL
11. Мееров М.В., Ахметзянов А.В., Берщанский Я.М. и др. Многосвязные системы управления - М.: Наука, 1990. - 264 с.
12. Тараскин Е.Н., Захарян А.З., Урсегов С.О. Адаптивный вариант оценки технологической эффективности закачки пара в условиях карбонатного коллектора с высоковязкой нефтью // Нефтяное хозяйство. 2018, № 11. С. 102 - 107. EDN: YPXNQT
13. Фон Нейман Д. Теория самовоспроизводящихся автоматов. - М.: Мир, 1971. - 382 с.
14. Хайндман, Р., Атанасопулос Д. Прогнозирование: принципы и практика. - М.: ДМК Пресс, 2023. - 458 с.
15. Эшби У.Р. Введение в кибернетику. - М.: КомКнига, 2006. - 432 с. EDN: QMPTLB
16. Ertekin T., Sun Q., Zhang J. Reservoir Simulation: Problems and Solutions. SPE Textbook Series. SPE. 2019 1166 p.
17. Godel K. “Uber formal unentscheidbare Satze der Principia Mathematica und verwandter Systeme I”. // Monatshefte fur Mathematik und Physik, no. 1 (1931), pp. 173 - 198. EDN: LGSTBR
18. Lafe O. Cellular Automata Transforms: Theory and Applications in Multimedia Compression, Encryption, and Modeling. Springer. 2012 - 189 p.
19. Langton C. “Studying Artificial Life with Cellular Automata” // Physica D: Nonlinear Phenomena. 1986, Vol. 22, Issues 1 - 3 pp. 120 - 149.
20. Lorenz E N. “On the existence of extended range predictability” // Journal Appl. Meteor. 1973, no. 12 pp. 543-546.
21. Makarov V.L., Bakhtizin A.R., Epstein J.M. Agent-based Modeling for a Complex World. - M.: Scientific publications department, GAUGN. 2022 - 74 p.
22. Shannon C.E. “A Mathematical Theory of Communication” // Bell System Technical Journal. 1948, no. 3 pp. 379 - 423.
23. Wolfram S. Cellular Automata and Complexity. Addison-Wesley. 1994- 608 p.
Выпуск
Другие статьи выпуска
В статье рассматриваются условия принятия результатов ДСМ-исследований. Определяются три типа истинностных значений - корреспондентные, когерентные и прагматические. Прагматические истинностные значения определяются посредством семантических типов эмпирических закономерностей. Рассматриваются три типа доверия к ДСМ-исследованиям - максимальное, допустимое и минимальное. Определяются также характеристики качества ДСМ-исследований. Установление доверия осуществляется в модуле когнитивного интерфейса интеллектуальных систем (ИС-ДСМ). ИС-ДСМ являются конструктивным средством интеллектуального анализа данных. В статье предлагаются усовершенствованные определения индукции и абдукции - логических средств ДСМ-метода АПИ, основанные на принципах конструктивной эволюционной эпистемологии и концепции эмпирической качественной причинности.
В данной статье проводится анализ воздействия региональных различий в потреблении продуктов на экономику. Рассматриваются различные факторы, которые влияют на разнообразие потребления продуктов в различных регионах, такие как климатические условия, культурные особенности, экономический уровень и доступность продуктов. Также исследуется влияние этих различий на развитие сельскохозяйственного сектора, торговлю и инфраструктуру. Использование искусственных обществ, в частности агентных моделей, позволяет провести более глубокий и детальный анализ воздействия различий в потреблении на экономику. Эти подходы учитывают широкий спектр факторов и взаимосвязей между участниками рынка, что может быть невозможным при использовании традиционных методов исследования. Использование агентных моделей позволяет учитывать поведение отдельных участников рынка, их взаимодействие и адаптацию к изменяющимся условиям. Это позволяет более точно оценить влияние региональных различий в потреблении продуктов на экономику, предсказать возможные последствия изменений в потреблении и выработать стратегии для оптимизации производства и распределения продуктов. Анализ воздействия региональных различий в потреблении продуктов на экономику является важным шагом для разработки эффективных политик в области сельского хозяйства, торговли и инфраструктуры.
В настоящее время классические понятия капитализма и социализма совершенствуются, уточняются, модифицируются. На сегодняшний день социалистическими называют страны с разным подходом к распределению общественных благ. В данной работе речь пойдет об искусственном обществе, в котором реализован механизм предпочтения социализма над капитализмом. Обосновывается, что такое общество представляется естественным при доминировании цифровых технологий, в частности, разнообразных видов роботов. Основное внимание будет уделено социальным нормам, так как в цифровом мире их роль становится едва ли не доминирующей. Нормы рассматриваются как эффективная мера борьбы с несправедливостью и неравенством. Типичный вопрос при построении искусственного общества - как сформулировать отношения между агентами применительно к добру и злу. Будет рассмотрена модель взаимодействия агентов между собой, где показатели взаимоотношения агентов, в частности, добро и зло, указываются в форме «существуют - не существуют» без их количественного измерения. Проводя расчеты на такого типа модели возможно определить, при каких условиях общество консолидируется или наоборот распадается на ненавидящие друг друга группировки и т. п.
Технологическое развитие России в последние годы идет активными темпами в связи с внешними вызовами, которые диктуют необходимость поиска внутренних ресурсов и ставит перед научным сообществом серьезные задачи в части развития научно-исследовательского потенциала и достижения программно-технологического суверенитета, особенно подчеркивая важность IT индустрии и долгосрочного прогнозирования. Важной составляющей является поиск «технологических ключей» к созданию товаров и услуг следующих поколений. Чтобы занять лидирующие позиции, необходимо быть на шаг впереди, создавая собственные конкурентные технологии, товары и сервисы. Нанотехнологии вбирающие в себя понятие IT, являются надотраслевой технологией, то есть, это основа для достижения прогресса в любой сфере человеческой деятельности. Без применения информационных технологий достичь выдающихся результатов в динамично меняющемся мире будет крайне сложно. Появляется интерес к новым методам компьютерного моделирования, которые позволяют создавать экспериментальные цифровые двойники в виде имитационных моделей и способны отчасти нивелировать неполноту информации. Можно принимать управленческие решения, смоделировав критически важные динамические процессы государства, например: сформировать прогноз на 10 лет о демографическом положении страны, сымитировать внутреннее социально-экономическое развитие, оценить и спрогнозировать геополитическую обстановку в период глобальных торговых войн, рассчитать интегральные показатели национальной силы передовых держав. Рассмотренные в статье прикладные инструменты моделирования демонстрируют полезность таких средств управления с развитыми функциональными элементами в информационно-аналитических структурах управления. В ближайшей перспективе эта тенденция будет возрастать и, те страны, которые займут лидирующие позиции в этом направлении, смогут создавать сверхэффективные прогнозно-аналитические сценарии с различным уровнем детализации. Задействовав все функциональные возможности имитационного моделирования можно создавать действительно прикладные инструментальные комплексы с потенциальным заделом на имплементацию подобных решений в структуры систем распределенных ситуационных центров для будущего развития технологического суверенитета и внедрения принципиально новых методов стратегического прогнозирования в Российской Федерации.
Автор статьи представляет киборгизацию человека как парадигмальный сдвиг в эволюции HomoSapiens, в рамках которого интеграция технологий в человеческое тело не только изменяет физические возможности, но и перестраивает социальные и культурные ландшафты. В работе рассматривается ряд актуальных нарративов, связанных с киборгизацией человека, и исследуются их последствия для человеческой идентичности, автономности и в целом для «человеческого». Опираясь на ряд междисциплинарных источников, включая философские труды современных ученых и правовую дискуссию о конкретной ситуации в словенской юриспруденции, автор анализирует инженерно-прагматический нарратив, ориентирующийся на прогресс и совершенствование человека, и культурно-гуманистический нарратив, основанный на дискуссии о сохранении человеческого достоинства и автономии. В исследовании также рассматривается биологическо-эволюционная перспектива, в рамках которой киборгизация рассматривается как одна из иллюстраций адаптивности и инструмент когнитивного совершенствования человека. В рамках проведенного анализа автор стремится осветить некоторые грани сложного взаимодействия между технологическим прогрессом и общественной системы, в рамках который существует современный человек, и внести вклад в дискуссию о роли киборгизации в продолжающемся развитии человечества
В рамках настоящей статьи сделано уточнение такого понятия, как «искусственный интеллект» (ИИ), исследован его функционал в сфере недвижимости. Проанализированы различные концептуальные подходы к возможностям, которые предоставляются технологиями искусственного интеллекта. Описаны технологии, предоставляющие широкие возможности для различных субъектов рынка недвижимости. Проведён обзор правовых регуляторов применения искусственного интеллекта в сфере недвижимости и проанализированы правовые аспекты применения IT-решений в сфере недвижимости. В статье рассматриваются преимущества и недостатки применения искусственного интеллекта в сфере недвижимости, затронуты вопросы, касающиеся факторов сдерживания интеграции ИИ-технологий в сферу недвижимости. Среди таких факторов могут быть технические ограничения, юридические ограничения, а также вопросы конфиденциальности и защиты персональных данных. Исследование представляет интерес для широкого круга специалистов, включая исследователей в области экономики, права, недвижимости и информационных технологий, а также для предпринимателей. Полученные в работе результаты могут послужить основой для разработки стратегий использования технологии искусственного интеллекта в сфере недвижимости в России и реформирования правовых и регуляторных механизмов для обеспечения безопасности и эффективности внедрения технологий.
Формирование искусственных сообществ в рамках различного вида математического и компьютерного моделирования, прежде всего, агент-ориентированного, требует уверенного знания о степени и характере взаимодействия моделируемых агентов, компонентов и элементов изучаемой системы. В работе выявлены закономерности влияния научно-инновационных показателей на уровень экономики в странах мира. На основании измерения уровня корреляций между публикационной активностью стран мира, подушевым уровнем расходов на НИОКР, патентной активностью и численности исследователей с уровнем их экономики относительно численности населения показано, что показатели сопряженности научно-инновационной сферы стран и уровня их достаточно высок, в в целом и он усилился с 2010 по 2022 год. С 2010 года изменилось соотношение уровней взаимной зависимости показателей научной и изобретательской деятельности и относительных величин национальных экономик, среди других показателей наибольшим уровнем сопряжения в 2022 году характеризуется именно публикационная активность. В значительной степени уровень сопряжения вырос благодаря резкой интенсификации уровня научного развития богатых нефтегазобывающих стран. С учетом места России в глобальных трендах научного развития автор делает вывод в целесообразности роста финансирования научных исследований в России при сохранении курса на поддержку продуктивности фундаментальной науки.
Начальным шагом построения многоагентной модели популяции является построение совокупности объектов-агентов, атрибуты которых будут распределены в соответствии со статистическими данными о реальной популяции, модель которой предстоит построить. Эти атрибуты в зависимости от типа модели могут включать, географическое положение, социальные связи, занятость, образование и уровень доходов, но общим является то, что такие данные часто представляют собой таблицы частот определенных уровней классификации значений отдельных признаков особей в популяции. Каждая таблица характеризует распределение одной случайной величины. Каждому агенту следует назначить значения атрибутов в соответствии с этими распределениями. В отличие от других моделей, которые были тесно связаны с конкретными агентными средами, в данной работе представляется обобщенный подход, предлагающий универсальный инструмент для распределения атрибутов агентов, который можно легко интегрировать в различные сценарии моделирования. Этот этап моделирования может быть выполнен с помощью генератора псевдослучайных векторов, распределение значений элементов которых в каждой из позиций будут соответствовать заданным таблицам частот. Статья затрагивает вопросы разработки алгоритма такого генератора, оценку его точности и эффективности, а также демонстрацию его применения на нескольких примерах.
Издательство
- Издательство
- ГАУГН
- Регион
- Россия, Москва
- Почтовый адрес
- 119049, г Москва, р-н Якиманка, Мароновский пер, д 26
- Юр. адрес
- 119049, г Москва, р-н Якиманка, Мароновский пер, д 26
- ФИО
- Промыслов Николай Владимирович (ИСПОЛНЯЮЩИЙ ОБЯЗАННОСТИ РЕКТОРА)
- Контактный телефон
- +7 (___) _______