SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Настоящий сборник издается в связи со 100-летием со дня рождения крупнейшего геометра, профессора Московского университета, заслуженного деятеля науки и техники, Дмитрия Федоровича Егорова (1869—1931).
Наиболее важные работы его по дифференциальной геометрии, помещенные в различных журналах, отечественных и зарубежных, были собраны, переведены и просмотрены ныне покойным профессором МГУ С. П. Финиковым и членом-корреспондентом АН СССР, профессором МГУ Л. Н. Сретенским.
«Таблицы интегральных преобразований» состоят из двух томов. Они вышли в США в 1954 г. и являются естественным дополнением и завершением трехтомного издания «Высшие трансцендентные функции» тех же авторов, перевод которого на русский язык вышел в этой же серии в 1965–67 гг. Перевод первого тома «Таблиц интегральных преобразований» вышел в свет в 1969 г.
Настоящая книга представляет собой перевод второго тома «Таблиц интегральных преобразований». Этот том содержит таблицы преобразований Бесселя, Римана–Лиувилля, Вейля, Стилтьеса, Гильберта, а также таблицы интегралов от специальных функций.
По полноте охвата материала это издание уникально. «Таблицы» являются настольной книгой для физиков теоретиков и экспериментаторов, инженеров-исследователей, математиков-прикладников и др.
Книга посвящена теории дифференциальных уравнений с частными производными смешанного типа. Автор вводит читателя в современное состояние математических задач, тесно связанных с задачами трансзвуковой газовой динамики.
В книге рассмотрены основные краевые задачи: задача Трикоми, обобщенная задача Трикоми для уравнения Чаплыгина, задача Франкля и видоизмененная задача Трикоми.
Книга «Уравнения в частных производных математической физики» предназначена в качестве учебного пособия для студентов и аспирантов университетов и технических вузов. Она является результатом переработки и дополнения двух известных книг: «Дифференциальные уравнения математической физики» (авт. Н. С. Кошляков, Э. Б. Глинер, М. М. Смирнов) и «Дифференциальные уравнения в частных производных второго порядка» (авт. М. М. Смирнов).
Предназначено для студентов университетов и вузов.
Книга Ф. Хартмана — одного из крупнейших специалистов по теории дифференциальных уравнений — возникла на основе различных курсов, которые автор неоднократно читал студентам и аспирантам разных специальностей. Только первые ее главы включают традиционный материал, в том или ином виде входящий во все учебники.
Далее следует изложение качественной теории дифференциальных уравнений, в котором особый интерес представляет круг вопросов, связанных с теоремой о поведении диффеоморфизма в окрестности неподвижной точки. И, наконец, остальная часть книги посвящена более специальным вопросам (асимптотическое интегрирование систем, близких к линейным, уравнения второго порядка, дихотомия и т. д.).
Упражнения (содержащие задачи различного уровня сложности, с решениями) играют в этой книге особую роль. Они не только позволяют читателю проверить, как он усвоил материал, но и указывают ему возможные направления дальнейшего развития теории.
Широта охвата материала, систематичность и четкость изложения делают книгу хорошим учебным пособием для студентов высших учебных заведений, однако и специалисты найдут в ней много ценного и интересного.
Топологическая теория динамических систем (топологическая динамика), начало которой было положено Дж. Д. Биркгофом, особенно интенсивно развивалась в 30-е — 40-е годы нашего столетия. Многие из полученных в то время результатов содержатся в монографии В. В. Немыцкого и В. В. Степанова [1] (четвёртая глава в первом издании и пятая — во втором) и книге В. Х. Готшалка и Г. А. Хедлунда [1]. В 50-х—60-х годах проведены исследования, которые, в частности, позволили по-новому взглянуть на некоторые полученные ранее результаты.
В настоящей работе излагаются основы теории динамических систем, однако автор старался по мере возможности затронуть и некоторые вопросы, выходящие за рамки “введения” в топологическую динамику. В частности, в последней главе рассмотрены вкратце различные обобщения теории динамических систем.
Приведенная в конце книги библиография содержит лишь работы, цитированные в этой книге; дополнительным источником может служить библиография, опубликованная В. Х. Готшалком [1].
Изложен курс лекций по методу функций Ляпунова, прочитанный в Белорусском ордена Трудового Красного Знамени университете им. В. И. Ленина. Основное внимание уделено методам построения функций Ляпунова для нелинейных систем. Приводятся методы оценки области притяжения, оценки решений, времени регулирования, интегральных критериев качества регулирования.
Излагаются достаточные критерии асимптотической устойчивости в целом, критерии абсолютной устойчивости. Приведено большое количество функций Ляпунова для нелинейных систем второго и третьего порядков. Рассмотрен случай, когда нелинейности зависят от двух координат точек фазового пространства. Исследуется также проблема построения векторных функций Ляпунова для сложных систем.
Для понимания материала необходимо знать курс математики в объеме вузовской программы.
Книга может быть рекомендована всем интересующимся конкретными приложениями теории устойчивости.
Первые две части книги были изданы ранее. Содержание третьей части:
Имя Пауля Халмоша весьма популярно в математическом мире и хорошо известно советскому читателю, высоко оценившему его книги “Теория меры”, “Лекции по эргодической теории” и “Конечномерные векторные пространства”. Его новая книга представляет собой оригинальный учебник по теории гильбертовых пространств и их применений, рассчитанный на активного читателя.
Книга, несомненно, полезна широкому кругу читателей, особенно студентам и преподавателям функционального анализа, а также всем тем, кто желает освежить и пополнить свои знания в одном из важнейших разделов современной математики — теории гильбертовых пространств. Заинтересуются ею и физики-теоретики.
Книга представляет собой пособие по решению задач математического анализа (функции одной переменной). Большинство параграфов книги содержит краткие теоретические введения, решения типовых примеров и задачи для самостоятельного решения. Кроме задач алгоритмически-вычислительного характера, в ней содержится много задач, иллюстрирующих теорию и способствующих более глубокому её усвоению, развивающих самостоятельное математическое мышление учащихся.
Цель книги — научить студентов самостоятельно решать задачи по курсу математического анализа (изучение теории должно производиться по какому-либо из существующих учебников).
Книга предназначена для студентов технических, экономических вузов и нематематических факультетов университетов. Она может оказаться полезной лицам, желающим пройти углублённый вузовский курс математического анализа, начинающим преподавателям, а также учителям средней школы, ведущим факультативные курсы в старших классах.