SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Сборник содержит задачи на вывод уравнений и граничных условий. Большое внимание уделяется различным методам решения краевых задач математической физики. Наряду с ответами к задачам приводятся указания, а для многих задач — решения, иллюстрирующие применение основных методов.
Третье издание. Для студентов университетов.
Пособие содержит задачи (по 30 вариантов каждой) из раздела высшей математики «Уравнения математической физики».
Задачи охватывают следующие темы: задачи Коши для квазилинейных дифференциальных уравнений с частными производными первого порядка; метод разделения переменных решения краевых задач для уравнений Лапласа и Пуассона в различных областях; начально-краевые задачи для уравнения теплопроводности и волнового уравнения; краевые задачи для уравнения Гельмгольца и интегрального уравнения Фредгольма II рода.
Каждая глава пособия начинается с изложения теоретических сведений и разбора примера решения конкретной задачи.
Предназначено для студентов старших курсов, обучающихся по техническим специальностям, а также аспирантов и преподавателей.
Книга ставит своей целью перенесение на физические проблемы известной «изопериметрической теоремы», утверждающей, что из всех плоских фигур заданного периметра круг имеет наибольшую площадь. Она содержит очень большое число ярких физических теорем, родственных изопериметрической теореме («из всех плоских мембран заданной площади наименьшую основную частоту имеет круглая мембрана» и др.), иногда довольно неожиданных; наряду с этим здесь имеется большое число недоказанных гипотез и постановок вопросов. В доказательстве авторы широко пользуются наглядными соображениями геометрического характера.
Книга, принадлежащая перу известных американских математиков и педагогов Г. Полиа (или Д. Пойя) и Г. Сеге. Рассчитана на студентов средних и старших курсов математических и физических специальностей, инженеров и научных работников.
В книге изложено почти без изменений содержание годового курса лекций по уравнениям математической физики, прочитанных автором на экспериментальном потоке механико-математического факультета МГУ.
По сравнению с имеющимися математическими курсами акцент делается на связи и взаимодействия с геометрией и физикой, а также на физическую интерпретацию результатов. Книга содержит элементы теории основных уравнений математической физики, изложенные на основе функционального анализа и теории обобщённых функций. В частности, в книге дано нетрадиционное изложение простейших аспектов теории потенциала, а также обсуждаются коротковолновые асимптотики решений гиперболических уравнений, связывающие волновую оптику с геометрической.
В конце каждого параграфа книги имеются задачи, помогающие усвоению материала и дополняющие основное содержание книги. Для студентов, аспирантов, научных работников — математиков и физиков.
Книга представляет собой самостоятельную часть курса математической физики, примыкающую к книге «Элементы прикладной математики» тех же авторов, но не зависимую от нее.
Основной особенностью является концентрация изложения вокруг физических задач, вывод математических методов из физической сущности задачи, возможно более полное прослеживание аналогий между математикой и физикой, отыскание физического смысла в математическом решении. Специальное внимание уделяется кинетическому уравнению, уравнению диффузии, законам сохранения, разрывам.
Книга предназначена студентам физических и других специальностей, для которых курс физики имеет определяющее значение, а также всем желающим познакомиться с физической сущностью методов математической физики.
Сборник задач, составленный коллективом преподавателей Московского физико-технического института, базируется на обновленных курсах уравнений математической физики, читаемых в МФТИ в течение многих лет.
В отличие от имеющихся задачников по уравнениям математической физики, в данном сборнике широко представлены задачи, в которых используется теория обобщенных функций и методы функционального анализа.
Книга содержит изложение курса лекций, которые автор читал в Московском и Новосибирском университетах. Направленность книги связана с интересами автора в области приложений дифференциальных уравнений к механике сплошных сред и с разработками численных методов решения этих уравнений.
Во втором издании (1-е издание выходило в 1971 г.) основной переработке подверглась теория симметрических гиперболических систем. В частности, изложена теорема существования решений у диссипативной смешанной задачи в случае двух пространственных и одной временной переменных.
Книга представляет интерес как для студентов, изучающих курс уравнений математической физики, так и для лиц, специализирующихся в области приложений уравнений в частных производных и численных методов их решения.
Книга Куранта-Гильберта еще до своего появления на русском языке приобрела заслуженную популярность среди советских математиков и физиков.
Меньше всего она претендует на роль учебника: столь многообразный материал (линейная и квадратическая алгебра, теория интегральных уравнений, линейные дифференциальные уравнения, обыкновенные и в частных производных, основы вариационного исчисления, теория разложения, функциональные ряды и теория специальных классов функций) не может, при сохранении стиля учебника, уместиться в рамках одной книги.
Книга Куранта-Гильберта еще до своего появления на русском языке приобрела заслуженную популярность среди советских математиков и физиков.
Меньше всего она претендует на роль учебника: столь многообразный материал (линейная и квадратическая алгебра, теория интегральных уравнений, линейные дифференциальные уравнения, обыкновенные и в частных производных, основы вариационного исчисления, теория разложения, функциональные ряды и теория специальных классов функций) не может, при сохранении стиля учебника, уместиться в рамках одной книги.
В книге изложен учебный материал по математической теории поля, дифференциальным уравнениям в частных производных и линейной алгебре в объеме, соответствующем учебной программе по курсу «Методы математической физики» для физико-математических факультетов педагогических институтов.