SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества научной социальной сети. Здесь хранятся все материалы с открытым доступом. Внесите свой вклад в общую библиотеку добавив больше книг и статей в свой раздел «Моя библиотека» с открытым доступом.
свернутьSciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Рассмотрены различные математические вопросы, возникающие при численном решении гиперболических систем уравнений в частных производных. Материал представлен в тесной взаимосвязи с такими важными областями применения этих систем, как теория мелкой воды, газовая динамика, магнитная гидродинамика, динамика твердого деформируемого тела и ряд неклассических областей механики сплошной среды.
Отличительной чертой книги является то, что она фокусирует внимание на приложениях, традиционных и новых. Это делает ее полезной не только для интересующихся численными методами, но также для механиков, физиков и инженеров, которым приходится решать нелинейные системы дифференциальных уравнений все возрастающей сложности.
Для специалистов в различных областях механики, физики и прикладной математики, аспирантов и студентов старших курсов, сталкивающихся с необходимостью решения гиперболических систем уравнений.
Книга «Уравнения в частных производных математической физики» предназначена в качестве учебного пособия для студентов и аспирантов университетов и технических вузов. Она является результатом переработки и дополнения двух известных книг: «Дифференциальные уравнения математической физики» (авт. Н. С. Кошляков, Э. Б. Глинер, М. М. Смирнов) и «Дифференциальные уравнения в частных производных второго порядка» (авт. М. М. Смирнов).
Предназначено для студентов университетов и вузов.
Уравнения с частными производными 1-го и 2-го порядков при одной неизвестной функции. Уравнения с частными производными 1-го и 2-го порядков при двух и больше неизвестных функциях. Понятие об интегральных уравнениях. Уравнения математической физики. Примеры и задачи №№ 205—300.
В настоящем томе, совершенно независимом от первого, излагается теория дифференциальных уравнений с частными производными с точки зрения математической физики. Более короткий третий том будет посвящен вопросам существования решений и построения решений с помощью конечно-разностных и других методов.
Предмет настоящего рассуждения составляет математическую часть различных физических теорий, как то: теории теплоты, теории упругости твердых тел и других. В задачах, встречающихся в этих теориях, предлагается найти интеграл данного уравнения с частными производными под различными условиями, зависящими от предмета, рассматриваемого в задаче. Вопрос этот решён для большей части случаев, которые встречаются в упомянутых теориях, тем не менее едва ли возможно решить его в общем виде.
Первый решивший вопрос подобного рода был Лагранж. Рассматривая задачу о колебании струны, он представил интеграл уравнения, от которого эта задача зависит, в виде ряда, расположенного по синусам и косинусам кратных дуг, и показал, каким образом определить коэффициенты этого ряда по начальному перемещению струны и начальным скоростям. В этих коэффициентах выводился из условий.
Лекции по механике Г. Кирхгофа (1824—1887) являются одним из классических произведений, посвященных теоретической механике. Несмотря на то, что эта книга была впервые издана почти 90 лет назад, своеобразный подход автора к проблеме основ механики и широкий охват материала делают ее интересной и полезной и в настоящее время.
Поэтому при переводе представлялось существенным важным по возможности сохранить стиль и характер книги, что заставило сохранить некоторые из тех терминов и выражений, которые устарели или не привились в науке.
Так как книга вследствие своей трудности и сжатости изложения доступна лишь для читателей, уже достаточно сведущих в механике, и отнюдь не может служить для первоначального изучения механики, то пояснительные примечания даны только в тех случаях, когда это оказалось существенно необходимым. В тех случаях, где переводчик указывал современное состояние проблемы, разбираемой в лекциях, это значительно увеличивало бы размер книги и могло бы изменить ее характер.
В конце книги приведен краткий биографический очерк Г. Кирхгофа, примечания и библиография его научных трудов.
Книга Э. Камке является единственным в мировой литературе справочником по дифференциальным уравнениям в частных производных первого порядка для одной неизвестной функции. В ней дается конспективное изложение важнейших разделов теории и собрано около 500 уравнений с решениями.
Книга предназначена для широкого круга научных работников и инженеров, сталкивающихся в своей практической деятельности с дифференциальными уравнениями. Значение этого справочника особенно велико в связи с тем, что в настоящее время на русском языке нет книги, в которой бы всесторонне и полно освещалась теория вопроса.
Монография известных итальянских ученых содержит весьма подробное и вместе с тем доступное изложение метода точного интегрирования ряда классов нелинейных уравнений в частных производных (основанного на изучении спектральных свойств некоторых линейных дифференциальных операторов), который дал начало развитию новой области математической физики, называемой теорией солитонов. Дается полный обзор современного состояния теории солитонов, излагаются новые результаты, полученные авторами.
Для специалистов, аспирантов и студентов, интересующихся теорией солитонов и ее приложениями.
Книга посвящена изложению с единой точки зрения широкого круга вопросов теории нелинейных волн в средах с дисперсией и диссипацией. Эта сравнительно молодая, бурно развивающаяся область нелинейной динамики вызывает в настоящее время значительный интерес у специалистов, работающих в самых различных областях.
Основное внимание уделяется нестационарным процессам. Общие закономерности иллюстрируются большим числом примеров из гидродинамики, физики плазмы, радиофизики, оптики и т. д.
В небольшой монографии Ф. Йона с достаточной полнотой обрисованы некоторые новые возможности классического метода плоских волн и сферических средних применительно к дифференциальным уравнениям с частными производными. Можно считать, что в этом направлении книга является дополнением и развитием соответствующих разделов широко известного труда Д. Гильберта и Р. Куранта «Методы математической физики».
В числе наиболее важных вопросов, рассмотренных в книге Ф. Йона, можно назвать: - решение задачи Коши для однородного гиперболического уравнения, - построение фундаментальных решений и изучение дифференциальных свойств решений эллиптических уравнений и систем, - оценка производных решений эллиптических уравнений и др.
Изложение четкое и доступное. Книга будет весьма полезной для студентов старших курсов, аспирантов и научных работников физико-математических специальностей.