SCI Библиотека

SciNetwork библиотека — это централизованное хранилище... ещё…

Результаты поиска: 214 док. (сбросить фильтры)
Статья: МОДЕЛИРОВАНИЕ ПОВЕДЕНИЯ ИНТЕЛЛЕКТУАЛЬНЫХ АГЕНТОВ НА ОСНОВЕ МЕТОДОВ МАШИННОГО ОБУЧЕНИЯ В МОДЕЛЯХ КОНКУРЕНЦИИ

В настоящей статье рассматриваются аспекты применения методов машинного обучения к существующим способам моделирования поведения интеллектуальных агентов для обеспечения возможности агентам повысить показатели своей эффективности в моделях конкуренции. Практическая значимость исследования представлена разработкой подхода к моделированию поведения интеллектуальных агентов, за счет которого можно повысить эффективность их функционирования в таких сферах деятельности, как компьютерные игры, разработка беспилотных летательных аппаратов и поисковых роботов, изучение городской и транспортной мобильности, а также в прочих сложных системах. Проведен обзор существующих методов машинного обучения (обучение с подкреплением, глубокое обучение, Q-обучение) и способов моделирования поведения агентов (модель на правилах, конечно-автоматная модель поведения, деревья поведения). Выбрана наиболее подходящая к задаче комбинация метода обучения и модели поведения: деревья поведения и обучение с подкреплением. Средствами Unity реализована тестовая платформа, разработаны модели поведения четырех основных архетипов агентов, которые должны соревноваться в задаче сбора ресурсов в условиях ограниченного времени. Реализован обученный агент с помощью средств Unity ML и TensorFlow. На базе тестовой платформы проведена серия экспериментов в различных условиях: ограниченность, изобилие, среднее количество ресурсов. В рамках эксперимента тестировалась способность разработанной модели поведения интеллектуального агента выигрывать в условиях конкуренции с агентами, снабженными различными вариантами традиционных моделей поведения на базе деревьев поведения. Оценены работоспособность и преимущества использования разработанной модели поведения. Проанализированы результаты эксперимента, сделаны выводы относительно потенциала выбранной комбинации методов.

Формат документа: pdf
Год публикации: 2023
Кол-во страниц: 1
Загрузил(а): Парыгин Данила
Язык(и): Русский, Английский
Доступ: Всем
Статья: ОЦЕНКА ИНВЕСТИЦИОННОЙ ЭФФЕКТИВНОСТИ РАЗРАБОТКИ СЛОЖНОЙ БОРТОВОЙ АППАРАТУРЫ МЕТОДАМИ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ

Исследована процедура моделирования работ, связанных с проектированием и разработкой сложной бортовой аппаратуры. Обучение модели, созданной с применением методов машинного обучения, осуществлено на основе данных, полученных в процессе предыдущих разработок в этой области.

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Загрузил(а): Кузнецова Елена
Язык(и): Русский
Доступ: Всем
Статья: АВТОМАТИЗАЦИЯ ПРОЦЕССА ГЕНЕРАЦИИ ТЕСТОВЫХ ШАБЛОНОВ С ИСПОЛЬЗОВАНИЕМ НЕЙРОННОЙ СЕТИ

Предложен алгоритм автоматизации процесса электронного проектирования на основе ATPG и методов нейронной сети. Получены данные об откатах для всех неисправностей типа stuck-at-0 и stuck-at-1. Достигнут оптимальный набор тренировочных данных для максимальной производительности нейронной сети. Отмечено, что предлагаемый метод обучения требует меньшего общего количества откатов для всех неисправностей в рассматриваемых схемах.

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Загрузил(а): Кураедов В.
Язык(и): Русский
Доступ: Всем
Статья: ПРАКТИКА ПРИМЕНЕНИЯ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА В ГОСУДАРСТВЕННОМ УПРАВЛЕНИИ: ВОЗМОЖНОСТИ И РИСКИ (РЕСПУБЛИКА БАШКОРТОСТАН)

Внедрение искусственного интеллекта (ИИ) в государственном управлении стремительно набирает обороты. Республика Башкортостан активно внедряет такие технологии, стремясь повысить эффективность и качество услуг, предоставляемых гражданам. Цель исследования - проанализировать практику применения ИИ в государственном управлении России в целом, и Республики Башкортостан в частности, выявить возможности и риски для органов власти и управления республики. В статье представлен обзор кейсов и инициатив по внедрению ИИ в различных сферах государственного управления, в том числе и в Республике Башкортостан; дана оценка потенциальных преимуществ ИИ для повышения эффективности работы органов власти и управления, улучшения качества предоставляемых услуг, ускорения принятия решений и повышения прозрачности.

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Язык(и): Русский, Английский
Доступ: Всем
Статья: ОБ ИСПОЛЬЗОВАНИИ ДЕРЕВЬЕВ РЕШЕНИЙ ДЛЯ ВЫЯВЛЕНИЯ ОБЛАСТЕЙ ПРИТЯЖЕНИЯ ЛОКАЛЬНЫХ МИНИМУМОВ В ПАРАЛЛЕЛЬНОМ АЛГОРИТМЕ ГЛОБАЛЬНОЙ ОПТИМИЗАЦИИ

В работе рассматривается решение многомерных задач многоэкстремальной оптимизации с использованием деревьев решений для выявления областей притяжения локальных минимумов. Целевая функцияпредставлена как «черный ящик», она может быть недифференцируемой, многоэкстремальной и вычислительно трудоемкой. Для функции предполагается, что она удовлетворяет условию Липшица с априоринеизвестной константой. Для решения поставленной задачи многоэкстремальной оптимизации применятсяалгоритм глобального поиска. Хорошо известно, что сложность решения существенно зависит от наличия нескольких локальных экстремумов. В данной работе предложена модификация алгоритма, в которойопределяются окрестности локальных минимумов целевой функции на основе анализа накопленной поисковой информации. Проведение такого анализа с использованием методов машинного обучения позволяетпринять решение о запуске локального метода, что может ускорить сходимость алгоритма. Данный подход был подтвержден результатами численных экспериментов, демонстрирующих ускорение при решениинабора тестовых задач.

Формат документа: pdf
Год публикации: 2023
Кол-во страниц: 1
Язык(и): Русский, Английский
Доступ: Всем
Статья: ПРИМЕНЕНИЕ ТРЕТИЧНОЙ СТРУКТУРЫ АЛГЕБРАИЧЕСКОЙ БАЙЕСОВСКОЙ СЕТИ В ЗАДАЧЕ АПОСТЕРИОРНОГО ВЫВОДА

В теории алгебраических байесовских сетей существуют алгоритмы, позволяющие проводить глобальный апостериорный вывод с использованием вторичных структур. При этом построение вторичных структур предполагает использование третичной структуры. Следовательно, возникает вопрос об обособленном применении третичной структуры в задаче апостериорного вывода. Этот вопрос рассматривался ранее, но было приведено только общее описание алгоритма, при этом учитывались лишь модели со скалярными оценками вероятности истинности. В данной работе приведен алгоритм, расширяющий вышеупомянутый до возможности его использования в случае интервальных оценок. Помимо этого, важным свойством алгебраической байесовской сети является ацикличность, и корректность работы перечисленных алгоритмов обеспечивается только для ацикличных сетей. Поэтому необходимо также уметь проверять ацикличность алгебраической байесовской сети с применением третичной структуры. Описание этого алгоритма также представлено в работе, в его основе лежит ранее доказанная теорема, которая связывает количество моделей фрагментов знаний в сети с количеством непустых сепараторов и количеством компонент связности сильных сужений в цикличной АБС, а также доказанная в данной статье теорема о принадлежности двух моделей фрагментов знаний к одной компоненте связности сильного сужения. Для всех разработанных алгоритмов доказана корректность работы, а также вычислена их оценка временной сложности.

Формат документа: pdf
Год публикации: 2023
Кол-во страниц: 1
Загрузил(а): Вяткин Артём
Язык(и): Русский, Английский
Доступ: Всем
Статья: РАСПОЗНАВАНИЕ УТОМЛЕНИЯ ЧЕЛОВЕКА НА ОСНОВЕ АНАЛИЗА ЕГО РЕЧИ С ПОМОЩЬЮ НЕЙРОСЕТЕВЫХ ТЕХНОЛОГИЙ

Качественные психофизиологические исследования сопряжены с созданием доступных и хорошо организованных баз данных, требующих большую предварительную работу по разработке измерительных комплексов, включающих не только средства для измерения психофизиологических параметров человека, но и его эмоционального состояния, которое отображается в выражении лица, речи и поведенческих паттернах респондентов. Измерительные комплексы должны также включать и средства обработки экспериментального материала. Суть исследования состояла в проведении эксперимента по созданию прототипа базы речевых данных русскоязычных респондентов, получения ответов на методические вопросы, возникающие у специалистов при использовании базы для задачи распознавания состояния утомления человека. Разработан аппаратно-программный комплекс, позволяющий синхронно регистрировать психофизиологические параметры, видеозаписи поведенческих реакций и аудиозапись речи человека. В качестве модели физического утомления использовался кардиореспираторный тест с физической нагрузкой. До прохождения и после завершении теста добровольцы зачитывали набор стандартных фонетически представительных текстов. Полученные аудиозаписи обрабатывались с помощью специализированной нейронной сети, способной анализировать интегральные спектральные характеристики звука. Результаты эксперимента показали возможность распознавания состояния утомления человека по его речи, что позволяет перейти к созданию большого банка аудиозаписей и совершенствованию алгоритмов распознавания состояния утомления.

Формат документа: pdf
Год публикации: 2023
Кол-во страниц: 1
Загрузил(а): Яковлев Александр
Язык(и): Русский, Английский
Доступ: Всем
Статья: ПРОБЛЕМА СОХРАНЕНИЯ АВТОРСКИХ ПРАВ В МАРКЕТИНГОВЫХ ИССЛЕДОВАНИЯХ: НОВЫЕ ВЫЗОВЫ В ЭПОХУ ИСКУССТВЕННЫХ НЕЙРОННЫХ СЕТЕЙ

В статье рассмотрено влияние нейросетей на интеллектуальную собственность в маркетинговых исследованиях. Автор утверждает, что растущее использование искусственного интеллекта и машинного обучения в маркетинговых исследованиях создает
новые проблемы для защиты прав интеллектуальной собственности. Статья дает представление о правовых тенденциях, связанных с использованием технологий в маркетинговых исследованиях, которые были проанализированы с помощью количественного контент-анализа и метода кейсов (case studies). Статья представляет собой ценный ресурс для исследователей, практиков и политиков, заинтересованных в проблемах
интеллектуальной собственности и искусственного интеллекта.

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Загрузил(а): ПЛЕТНЕВА Елизавета
Язык(и): Русский, Английский
Доступ: Всем
Статья: АЛГОРИТМЫ ПЕРВИЧНОГО АНАЛИЗА ЛОКАЛЬНЫХ ОБЪЕКТОВ ФЛУОРЕСЦЕНЦИИ В СЕКВЕНАТОРЕ ДНК "НАНОФОР СПС"

В секвенаторе ДНК «Нанофор СПС», разработанном в Институте аналитического приборостроения РАН, реализован метод массового параллельного секвенирования для расшифровки последовательности нуклеиновых кислот. Этот метод позволяет определять последовательность нуклеотидов в ДНК или РНК, содержащих от нескольких сотен до сотен миллионов звеньев мономеров. Таким образом, имеется возможность получения подробной информации о геноме различных биологических объектов, в том числе человека, животных и растений. Важнейшей частью этого прибора является программное обеспечение, без которого невозможно решение задач по расшифровке генома. Выходными данными оптической детекции в секвенаторе являются набор изображений по четырем каналам, соответствующим типам нуклеотидов: A, C, G, T. С помощью специального программного обеспечения определяется положение молекулярных кластеров и их интенсивностные характеристики вместе с параметрами окружающего фона. В ходе создания программного обеспечения прибора были разработаны алгоритмы и программы обработки сигналов флуоресценции, рассмотренные в работе. Также, для отладки и тестирования рабочих программ созданы модели построения изображений, аналогичных реальным данным, получаемым в ходе работы секвенатора. Данные модели позволили получить значительный массив информации без запуска дорогостоящих экспериментов. За последние годы достигнуты значительные успехи в области машинного обучения, в том числе и в области биоинформатики, что привело к реализации наиболее распространенных моделей и возможности их применения для практических задач. Однако, если на этапе вторичного анализа биоинформационных данных эти методы широко зарекомендовали себя, то их потенциал для первичного анализа остается недостаточно раскрытым. В данной работе особое внимание уделяется разработке и внедрению методов машинного обучения для первичного анализа оптических изображений сигналов флуоресценции в реакционных ячейках. Описаны методы кластеризации и их апробация на моделях и на изображениях, полученных на приборе. Цель этой статьи - продемонстрировать возможности алгоритмов первичного анализа сигналов флуоресценции, получающихся в процессе секвенирования на приборе «Нанофор СПС». В работе описаны основные задачи анализа сигналов флуоресценции и сравниваются традиционные методы их решения с использованием технологий машинного обучения.

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Загрузил(а): Манойлов Владимир
Язык(и): Русский, Английский
Доступ: Всем
Статья: БЕССТРЕССОВЫЙ АЛГОРИТМ УПРАВЛЕНИЯ БЕГОВЫМИ ПЛАТФОРМАМИ НА ОСНОВЕ НЕЙРОСЕТЕВЫХ ТЕХНОЛОГИЙ

В статье рассматривается задача прогнозирования скорости человека с использованием нейросетевых технологий и компьютерного зрения для минимизации запаздывания в системах управления беговыми платформами, приводящего к риску для здоровья пользователя. Для ее решения разработан бесстрессовый алгоритм, включающий прогнозирование положения и скорости пользователя на беговой платформе, включающий процедуру расчета скорости беговой платформы на основе анализа положения и характера движения пользователя, схему сбора и обработки данных для обучения нейросетевых методов, процедуру определения необходимого количества прогнозируемых кадров для устранения запаздывания. Научная новизна исследования состоит в разработке алгоритма управления беговыми платформами, объединяющего технологии компьютерного зрения для распознавания модели тела пользователя платформы, нейронные сети и методы машинного обучения для определения итоговой скорости человека на основе объединения данных о положении человека в кадре, текущей и прогнозируемой скорости человека. Предложенный алгоритм реализован с использованием библиотек Python, проведена его апробация в ходе экспериментальных исследований при анализе предшествующих 10 и 15 кадров для прогнозирования 10 и 15 следующих кадров. В результате сравнения алгоритмов машинного обучения (линейная регрессия, дерево решений, случайный лес, многослойные, сверточные и рекуррентные нейронные сети) при различных величинах длин анализируемых и прогнозируемых кадров наилучшую точность при прогнозировании положения показал алгоритм RandomForestRegressor, а при определении текущей скорости - плотные многослойные нейронные сети. Проведены экспериментальные исследования по применению разработанного алгоритма и моделей для определения скорости человека (при прогнозе в диапазоне 10-15 кадров получена точность более 90%), а также по их интеграции в систему управления беговой платформой. Испытания показали работоспособность предложенного подхода и корректность работы системы в реальных условиях. Разработанный алгоритм позволяет не использовать чувствительные к помехам датчики, требующие закрепления на теле человека, а прогнозировать действия пользователя за счет анализа всех точек тела человека для снижения запаздывания в различных человеко-машинных системах.

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Загрузил(а): Обухов Артём
Язык(и): Русский, Английский
Доступ: Всем