SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Проблема и цель. Уменьшение потерь в процессе уборки является сейчас довольно важной задачей. При уборке из-за несогласованности работы и движения сельскохозяйственной техники может теряться до 10 % урожая. Цель исследования описать основные принципы работы устройства отслеживания погрузки силосной резки, рассчитать параметры камеры и получить наиболее удачный способ отслеживания расположения устройства.
Методология. Необходимо выяснить, где должна располагаться стереопара из камер, отслеживающая положение кузова и его заполненность: на каком расстоянии и на какой высоте, чтобы охватывать в том числе днище кузова, в который производится отгрузка кукурузы. Для этого необходимо составить схемы и составить на их основе формулы для вычисления параметров стереопары; получить также необходимые данные, в том числе и на основе видеоматериала. После чего произвести окончательный расчет параметров.
Результаты. При правильном подборе параметров стереопары и написании достаточно хорошего алгоритма обработки изображений можно получить алгоритм слежения, который позволяет решить проблему выгрузки. Таким образом, параметры работы устройства отслеживания погрузки силосной резки: стереобазис устройства отслеживания b=9 см; угол обзора камеры a=120°; место расположения устройства отслеживания на краю рукава выгрузки комбайна; высота места расположения устройства отслеживания относительно кузова hc=2,04 м; удаленность места расположения устройства от кузова lc= 1,4-2,1 м. Установлено, что расположение на силосопроводе, является достаточно логичным, так как необходимые условия для отслеживания состояния кузова и его расположения выполнены. Это также означает, что при правильном подборе параметров стереопары и написании достаточно хорошего алгоритма обработки изображений можно получить алгоритм слежения, который позволяет решить проблему выгрузки.
Проблема и цель. Современное сельское хозяйство требует интенсификации процессов выращивании сельскохозяйственных культур. Цель исследования активизировать физиологические процессы растений, улучшить усвояемость удобрений, повысить устойчивость развития растений, обеспечивая экологичность производства сельскохозяйственной продукции.
Методология. Воздействие электростатического напряжения по физическому эффекту сопоставимо с воздействием атмосферного электричества во время грозы. Благодаря высокому напряжению капли аэрозоля оседают на листья растения, образуется озон, который обеззараживает растения. Прибор для создания электростатического поля представляет собой каскадный генератор с ограничителем тока, величина напряжения регулируется в диапазоне от 1000 до 5000 В. В зависимости от величины напряжения и высоты установки воздушного электрода менялась напряженность от 890 до 2000 В/м. Растения выращивали в специальных контейнерах, в качестве грунта применяли прессованное джутовое волокно. Влажность воздуха в пленочном укрытии поддерживали с помощью увлажнителя воздуха в диапазоне 80-90 %. В процессе эксперимента в пленочном укрытии поддерживали в ночное время температуру 17-19° C, в дневное время 21-26° C. Каскадный генератор электростатического поля включали в дневное время с 8:00 до 15:00 часов.
Результаты. При развитии микрозелени установлено, что за короткий период вегетации у растений контрольной и опытной групп сформировалось одинаковое количество листьев, но высота стебля, развитие корневой системы, площадь листьев при стимулировании электростатическим полем (в опытной группе) были больше, развитие растений происходило более интенсивно, чем в контрольной группе. По окончании периода выращивания микрозелени высота растений различалась в среднем на 2,5 см, причем растения в опытной группе имели более толстый стебель, большую площадь листьев.
Заключение. С увеличением напряженности электростатического поля развитие растений осуществлялось более интенсивно. При электростатическом стимулировании растений важную роль играет не только напряженность электростатического поля, но и расстояние между электродом и верхушкой растения.
Проблема и цель. Ранний картофель является очень ценным пищевым продуктом. Достижение хорошей урожайности картофеля зависит от способов и видов оборудования, которое применяется для обработки семян перед посадкой. Цель исследований минимизировать расход препаратов и повысить эффективность предпосадочной обработки клубней картофеля.
Методология. Исследование проводилось по параметрам работы установки: скорости движения роликового транспортера, частоте вращения роликов. Также изучалось распределение раствора по поверхности образцов при прохождении через камеру на соответствующих режимах. Предметные стекла в специальных приспособлениях устанавливали в общем потоке клубней картофеля, и генератор обрабатывал поток горячим аэрозолем, затем стекла исследовались в лабораторных условиях с помощью микроскопа. Для оценки эффективности работы установки была исследована плотность покрытия образца каплями аэрозоля.
Результаты. Получена зависимость количества кристаллов от скорости роликового транспортера и частоты вращения роликов. Средний размер кристаллов составляет 4,7 мкм, средний диаметр капель горячего тумана составляет около 9,5 мкм. Наибольшее покрытие каплями обрабатываемой поверхности происходит на наименьшей скорости работы роликового транспортера Vi=1 м/с и на более низкой частоте Fi=28,40 об/мин. Для данных режимов максимальная концентрация кристаллов (на стеклянном кубе внутри напечатанного шара) на 1 см2 поверхности составила 45111 шт. Минимальное количество кристаллов 38415 шт на стеклянном кубе внутри напечатанного шара на 1 см2 было отмечено при скорости роликового транспортера V3=3,0 м/с и частоте вращения роликов F3=36,1 об/мин. Среднее значение количества кристаллов на 1 см2 составляет 41132 штук.
Заключение. Проведенный эксперимент по исследованию эффективности покрытия объекта горячим туманом (аэрозолем) показал, что за счет регулирования параметров установки для предпосадочной обработки семян раннего картофеля можно добиться высокой плотности капель раствора гумата калия, наносимого на поверхность объекта.
Проблема и цель. Обработка растений аэрозолем пестицидов - распространенная операция защиты растений. Расход рабочего раствора определяется размером капель. Для ультрамалообъемного опрыскивания размер капель составляет около 50 мкм, что позволяет существенно уменьшить расход рабочего раствора и повысить эффективность применения пестицидов. Аэрозольная обработка горячим туманом позволяет уменьшить размер капель до менее 20 мкм и улучшить равномерность распределения капель на растениях, но требует специальных условий для осаждения капель. Цель исследования - изучение электростатического осаждения капель аэрозоля на растения.
Методология. Для получения аэрозолей используются генераторы горячего тумана, образующие среднедисперсные аэрозоли с размером капель 10-20 мкм. Поэтому для транспортировки и осаждения капель эффективно использовать электростатическое поле высокой напряженности. Для образования коронного разряда необходимо обеспечить резко неоднородное электрическое поле, которое возникает на коронирующем электроде в виде иглы. Для исследования воздействия электростатического поля на осаждение капель горячего тумана на растения было разработано устройство. Высоковольтное напряжение 1-5 кВ от генератора электростатического поля подводили к различным элементам: отрицательный заряд к электроду на выпускном патрубке генератора горячего тумана, а положительный заряд - к электродам, расположенным в рассадном ящике в почве.
Результаты. При электростатическом поле с напряжением 1000 В среднее количество капель на 1 мм2 составило 4,3; среднее квадратическое отклонение составило 0,7; коэффициент вариации 0,17. При электростатическом поле с напряжением 5000 В среднее количество капель на 1 мм2 составило 14,7; среднее квадратическое отклонение составило 2,1; коэффициент вариации 0,14. С увеличением напряжения электростатического поля осаждение капель увеличивается, однако следует дополнительно изучить вопрос влияния высокого электростатического поля на растения.
Заключение. Количество осаждённых капель аэрозоля определяется напряженностью электростатического поля. Установлено, что с увеличение напряженности электростатического поля уменьшается средний размер осаждаемых капель, это обусловлено тем, что капли меньшего диаметра осаждаются более интенсивно.
Систематизация признаков условий формирования свободных гидравлических струй и их дробления упрощает решение задач по критериальному описанию распыливающих устройств и выбору соответствующих алгоритмов для их последующего анализа и оптимизации. На основании анализа известных теоретических предпосылок предложена классификация свободных струй по признакам и условиям истечения применительно к решению конкретных задач в области механизации защиты растений. Метод разделения элементов классифицируемого множества относится к фасетно-иерархическому. Полииерархические блоки основаны на отношениях подчинения. Максимальная глубина классификации ограничивается тремя ступенями группировки признаков и содержит 11 классов наиболее существенных признаков, потенциально рассматриваемых при анализе устройств для распыления жидкости. В качестве примера выполнен характеристический анализ процесса распыла оригинальным распылителем, ранее разработанного авторами. Сформулированы исходные условия реализации процесса распыла и подготовлена расчетная схема для последующей оптимизации конструктивно-режимных параметров устройства. Экспериментальными исследованиями установлено влияние диаметра сопла и давления в гидросистеме на критерий Рейнольдса и коэффициент расхода пристенного потока. Для суммарных площадей сопел 0,785..,7,065x10 е м2 и давлении в гидросистеме 0,05; 0,1; 0,15 МПа, значения Re-критерия находятся в интервале 0,99…5,2x104. Оптимальная суммарная площадь сопловых отверстий мультирежимного распылителя равна 5,9x10 е м2. Разработанная классификация может быть использована для характеристического анализа и последующей оптимизации процесса распыла распыливающими устройствами для целей АПК.
Представлены результаты плазмохимической обработки воды и исследования ее влияния на всхожесть семян огурцов, а также на динамику начального роста растений. Водопроводную воду обрабатывали импульсным подводным разрядом, формирующимся в парогазовых пузырьках у поверхности погруженного в воду графитового электрода. Разряд горел при амплитудных значениях напряжения 800 В и тока разряда 200 мА. Получены осциллограммы тока и напряжения на электродах, измерены значения удельной электропроводности воды, значения рН, концентрации нитрит- и нитрат-ионов, а также пероксида водорода в обработанной воде. Показано, что использование воды после плазмохимической обработки повышает всхожесть семян, ускоряет развитие корневой системы, рост стебля и листьев на ранних стадиях развития растений.
Исследовано воздействие тлеющего разряда атмосферного давления на поверхностные свойства семян зерновых культур. Показано, что плазменная обработка позволяет значительно улучшить контактные свойства поверхности семян и получить низкие значения краевых углов смачивания. Воздействие на оболочку семени неравновесной плазмы тлеющего разряда атмосферного давления приводит к модификации поверхности семени, заключающееся в проявлении на поверхности семени мелкоячеистой сетчатой структур. При увеличении длительности воздействия или мощности разряда эффекты травления на поверхности семени усиливаются, но при этом скорость прорастания семян не увеличивается с интенсификацией параметров обработки.
Экспериментально исследована возможность получения нанокристаллической целлюлозы (НКЦ) путем газоразрядной обработки водных суспензий микрокристаллической целлюлозы или фильтровальной бумаги. Для обработки использовали разряд постоянного тока при атмосферном давлении с водным катодом при токе разряда 35 мА и напряжении горения 1500 В. Найдено, что плазмохимическая обработка цел-люлозосодержащего материала в воде без использования других реагентов приводит к выделению НКЦ с относительно большими размерами частиц и небольшим поверхностным зарядом.
Представлены результаты обработки клубней картофеля продуктами плазмы апокампического разряда. Показано, что такая обработка может снизить их контаминацию и как результат, создать благоприятные условия для формирования урожая. Для этого проведена предпосевная обработка клубней картофеля двух сортов «Гала» и «Королева Анна», которые помещались в контейнер, где зажигали апокампический разряд в воздухе атмосферного давления.
Проведены исследования воздействия положительного и отрицательного коронного разряда на семена мягкой озимой пшеницы, зараженные твердой головней, альтернариозом и гельминтоспориозом, при времени воздействия разрядом от 20 до 120 минут. Было показано, что обработка семян озимой пшеницы положительной короной оказывала более сильное обеззараживающее воздействие в сравнении с отрицательной короной. При выявленном подавлении альтернариоза и гельминтоспориоза плазмой отсутствует необходимость в применении химических протравителей семян.
При увеличении времени обработки зерна коронным разрядом зараженность зерен уменьшается.