Архив статей журнала
Статья посвящена применению методов машинного обучения при прогнозировании формирования перспективных секторов экономики нового поколения. В условиях современных цифровых трансформаций показано, что замена традиционной существующей экономики на экономические модели нового поколения является одним из приоритетных направлений развития в мире. Обоснована актуальность применения методов машинного обучения (МО), одной из технологий искусственного интеллекта (ИИ), в совершенствовании процессов формирования и развития традиционных секторов экономики, а также в прогнозировании ее перспективных секторов нового поколения. Проведен анализ научных исследований, посвященных проблеме. Цифровая трансформация и технологии, устойчивость и экологичность, экологизация технологий и цикличность, совместное использование, интеллектуальное принятие решений и управление, платформы и экосистемы, инновационное предпринимательство, исследования и экономическое развитие, инклюзивность и социальное развитие, платформенные технологии Индустрии 5.0 формирования технологической экономики нового поколения. Разработаны основные базовые принципы, такие как переход и т. д., проанализированы проблемы ее формирования. Изложены 1 2 особенности и перспективы применения методов машинного обучения при прогнозировании перспективных отраслей экономики нового поколения. Изложены классификационные признаки методов машинного обучения и показаны его модели. Разработана структурная схема этапов прогнозирования развития экономики и предоставлены сведения о ее методах. Проведен сравнительный анализ методов машинного обучения, применяемых при прогнозировании. Разработана структурная схема этапов применения метода машинного обучения в процессе прогнозирования. Даны актуальные рекомендации по применению технологий платформы «Индустрия 4.0» для прогнозирования формирования перспективных отраслей экономики нового поколения на основе реальных данных.
Цель исследования - прогнозирование динамики показателей уровня удовлетворённости и трудового потенциала населения регионов РФ. Эти показатели в том числе необходимы для мониторинга состояния суверенитета и национальной безопасности страны, особенно в условиях санкций и санкционного противостояния. Исследование проводится на базе агент-ориентированного похода. Этот метод подходит для имитации комплексной системы (в данном случае региона РФ) путём симуляции поведения её компонентов (агентов-людей). То есть уровень удовлетворённости и трудовой потенциал каждого человека меняется в зависимости от его поведения и состояния окружающей среды, что приводит к изменению показателей всего региона. Технически разрабатываемая для данного исследования агент-ориентированная модель реализована в среде разработки Microsoft Visual Studio на языке программирования C#. Первый раздел статьи приводит обзор на актуальные исследования за рубежом и в РФ с применением агент-ориентированного моделирования рамках прогнозирования социально-экономических процессов. Второй раздел предоставляет краткое описание применяемого метода и описание разрабатываемой агент-ориентированной модели. Третий раздел описывает полученные на основе модели результаты на примере одного из субъектов РФ (Калужской области).
В статье рассматриваются основные факторы экономических кризисов. Факторы проанализированы с помощью моделей машинного обучения. В исследовании применяются два алгоритма машинного обучения, деревья решений и градиентный бустинг. Деревья решений создаются путем разделения данных на подмножества на основе значения входных функций. Бустинг, ансамблевый метод, обучается путём объединения множества небольших моделей для создания финальной, прогнозирующей модели. Проведён детальный анализ научных работ на тему использования машинного обучения для анализа кризисных явлений. Распространённые факторы моделирования дополнены новыми, итоговые факторы включают в себя широкий список макроэкономических показателей, биржевых данных и социально-политических факторов. Данные были проанализированы с помощью статистического анализа временных рядов, далее данные были стандартизированы для применения в моделях машинного обучения. Параметры моделей подобраны на данных, с помощью метода кросс-валидации. Наиболее эффективные модели были использованы для анализа значимости факторов кризисных явлений. Результаты показывают потенциал использования моделей машинного обучения в анализе кризисов, предлагает новые инструменты раннего обнаружения кризисов и использования результатов для стратегического планирования органами государственной власти. Будущие направления исследования включают в себя улучшения статистической интерпретации результатов машинного обучения, применение более сложных моделей и создание систем анализа в реальном времени.
При многоагентном моделировании ключевым моментом является реализация модели в виде компьютерной программы. Реализацию модели можно сделать удобнее, если использовать проблемно-ориентированный язык (domain-specific language, DSL). В ходе данной работы была разработана библиотека на языке программирования C#, представляющая собой проблемно-ориентированный язык, позволяющий формулировать задачу моделирования на высоком уровне в терминах, близких предметной области. Были предложены структуры данных и иерархия классов. В частности, была предложена реализация агента, состав атрибутов которого может изменяться в процессе моделирования. Библиотека также включает в себя методы для моделирования жизни сообщества: рождаемости и смертности, имеет средства для моделирования брачного поведения. В ходе тестирования было показано, что расход памяти в пике и вычислительная сложность в целом соответствует теоретическим оценкам, структура моделируемого сообщества соответствует демографическим данным. Была построена модель населения Российской Федерации по демографическим данным 2019 года и выполнен прогноз изменения численности населения к 2036 году. Получен результат, близкий к полученному для этих данных и интервала времени Росстатом, способом, отличным от многоагентного моделирования.
Обсуждены существующие проблемы в применении компьютерного прогнозирования добычи нефти и эффективности проведения геолого-технических мероприятий, связанные, прежде всего, с высокой неопределённостью функциональных зависимостей, наличием большого числа гетерогенных объектов и ограниченным объемом доступной геолого-промысловой информации. В качестве альтернативного варианта геолого-гидродинамического моделирования нефтяных месторождений предложен агент-ориентированный подход, отличающийся тем, что вместо традиционных дифференциальных уравнений в частных производных или искусственных нейронных сетей для прогнозирования добычи нефти и эффективности геолого-технических мероприятий используются агент-ориентированные геолого-гидродинамические модели, которые рассчитываются согласно локальным правилам, непротиворечащим глобальным законам подземной гидравлики, и с использованием каскадов нечетко логических матриц, каждый из которых содержит около тысячи различных параметров. Таким образом, удается создать математический инструмент, приближенный к «сильному» искусственному интеллекту, способный принимать самостоятельные решения и генерировать реалистичные прогнозы.