Архив статей журнала

СИМУЛЯТОРЫ БЕСПИЛОТНОГО НАЗЕМНОГО ТРАНСПОРТА, ПРИМЕНЯЕМЫЕ ДЛЯ МОДЕЛИРОВАНИЯ ДВИЖЕНИЯ ПО ПЕРЕСЕЧЕННОЙ МЕСТНОСТИ (2025)
Выпуск: № 1 (2025)
Авторы: Макаров Максим Игоревич, Коргин Николай Андреевич, Пыжьянов Андрей Александрович

Рассматриваются популярные симуляторы беспилотных транспортных средств с поддержкой пересеченной местности: Gazebo, CARLA, AirSim, NVIDIA Isaac Sim и Webots. Описаны их основные возможности, связанные с моделированием рельефа, физикой движения, поддержкой датчиков и погодных условий. Особое внимание уделено созданию реалистичных сцен пересеченной местности, сложности импорта реальных карт и взаимодействию с другими программными платформами, такими как Robot Operating System (ROS) и системы ИИ. Проанализированы основные минусы каждого симулятора: трудоемкость создания детализированных моделей рельефа и транспортных средств, высокая сложность интеграции реальных карт и зависимость от характеристик компьютерного оборудования. Также отмечается сложность взаимодействия с различным программным обеспечением и требования к знаниям в области 3D-моделирования. Симуляторы Gazebo и Webots выделяются хорошей интеграцией с ROS, но требуют больше усилий для работы с пересеченной местностью. CARLA и AirSim обеспечивают высококачественную визуализацию, но имеют более высокие требования к оборудованию и навыкам пользователя для создания ландшафтов. NVIDIA Isaac Sim выделяется поддержкой симуляций с использованием ИИ, но требует значительных ресурсов. Представлен опыт авторов в части отображения траекторий и ориентации транспортного средства в некоторых симуляторах.

Сохранить в закладках
АЛГОРИТМ ЛОКАЛЬНОГО ПЛАНИРОВАНИЯ ПУТИ ДЛЯ ОБЪЕЗДА ПРЕПЯТСТВИЙ В ПУТЕВЫХ КООРДИНАТАХ (2024)
Выпуск: № 3 (2024)
Авторы: Макаров Максим Игоревич

Представлен алгоритм локального планирования пути в системе координат дорожного полотна. Он основан на варьировании точек исходной траектории с применением метода потенциального поля и обеспечения гладкости получаемого пути относительно новой системы координат. Реализация алгоритма основывается на решении задачи минимизации целевого функционала. Рассматривается решение задачи применительно к планированию пути беспилотной транспортной платформы, для чего требуется изменять участки заранее подготовленной гладкой траектории движения транспортного средства в режиме реального времени с учетом возникающих препятствий и с сохранением гладкости. Использование новой системы координат дает преимущество во времени выполнения алгоритма по сравнению с его работой в декартовой системе координат. Алгоритм реализован на языке Python. Выделение горизонта планирования позволяет сочетать предложенный подход с различными алгоритмами следования по пути, которые сами по себе не реализуют методы обхода препятствий. Численное моделирование выполнено для характерных примеров, по которым можно оценить эффективность предложенного алгоритма.

Сохранить в закладках