Негладкие особенности минимаксного (обобщённого) решения рассматриваемого класса задач Дирихле для уравнений гамильтонова типа обусловлены существованием псевдовершин - особых точек границы краевого множества. В работе развиваются аналитические и численные методы построения псевдовершин и сопутствующих им конструктивных элементов, к которым относятся порождающие псевдовершины локальные диффеоморфизмы, а также маркеры - числовые характеристики этих точек. Для маркеров получено уравнение с характерной структурой, присущей уравнениям для неподвижных точек. Предложена основанная на методе Ньютона итерационная процедура численного построения его решения. Доказана сходимость процедуры к маркеру псевдовершины. Приведён пример численно-аналитического построения минимаксного решения, иллюстрирующий эффективность развиваемых подходов построения негладких решений краевых задач.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.