Рассматривается модель динамики изолированной популяции, описываемая дифференциальным уравнением с запаздывающим аргументом. Изучается случай, когда в модели имеется не более двух положений равновесия, соответствующих полному вымиранию популяции и постоянной положительной численности популяции. Указаны условия на правую часть уравнения, при которых происходит стабилизация решений к положениям равновесия при произвольных неотрицательных начальных данных. Получены оценки скорости стабилизации в зависимости от коэффициентов уравнения, нелинейной функции, входящей в правую часть уравнения, и функции, заданной на начальном промежутке времени. Установленные оценки характеризуют скорость вымирания популяции и скорость стабилизации численности популяции к постоянной величине. Результаты получены с использованием функционалов Ляпунова - Красовского.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.