Архив статей журнала
Цель работы состоит в усовершенствовании методов компьютерного мониторинга и параметрической идентификации моделей расходных характеристик судов для анализа и прогнозирования показателей энергоэффективности объектов водного транспорта, а также оптимизации режимов работы дизель-генераторных агрегатов.
Предложен алгоритм параметрической идентификации характеристик «вход-выход» различных по природе технологических процессов и систем (технических, биологических, экономических, социальных, экологических и др.) по данным измерений с помощью аппроксимоторных (регрессионных) нейронных сетей с возможностью количественной оценки погрешности параметрической оптимизации по эвклидовой норме.
В отличие от известных методов параметрической пригонки модели по статистическим рядам предлагаемый способ базируется на обучении многослойной нейрон ной сети с обратным распространением ошибки отклонений значений выходных сигналов от эталонных с целью ее коррекции за счет введения поправок в значения весовых коэффициентов синаптических связей.
Реализация алгоритма идентификации на основе предлагаемого способа пригонки модели выполнена с помощью радиальных нейронных сетей, имеющих фиксированную структуру с одним скрытым и одним выходным слоями в соответствии с нелинейными и линейными функциями активации нейронов, обеспечивающих точность отображения образов на основе эвклидовой метрики.
Предлагаемый подход позволяет упростить режимы обучения и обеспечить приемлемую точность аппроксимации и идентификации. Алгоритм реализован при оценивании параметров расходной характеристики судна с известной структурой модели потребления топлива по соответствующему статистическому ряду при заданном начальном приближении. Алгоритм может быть применим для идентификации параметров моделей характеристик расхода энергоресурсов как на судах, так и в целом в отрасли внутреннего водного транспорта при вычислении целевых индикаторов и показателей ее развития.