Архив статей журнала
Автоматическая саммаризация текста – одна из ключевых задач NLP, предполагающая создание краткой версии исходного текста. В современном мире, где объемы потребляемой человеком информации неустанно растут, задаче саммаризации уделяется все больше внимания. Автореферирование предполагает два основных подхода: экстрактивный и абстрактивный. Последний заключается в автоматическом создании саммари текста, в котором могут содержаться слова и предложения, не встречающиеся в источнике. Этот подход зачастую требует использования нейросетевых моделей, и для его реализации необходимы большие наборы специальным образом размеченных данных. Несмотря на значительные успехи в абстрактивной саммаризации публицистических и научных текстов, методы и датасеты, используемые для работы с монологическими документами, не всегда применимы для саммаризации диалогов. Кроме того, хотя создано достаточно много англоязычных датасетов для саммаризации текстов различных доменов, существующие наборы данных для автоматического аннотирования текстов на русском языке пока немногочисленны. Настоящая статья посвящена разработке и описанию русскоязычного диалогового датасета для саммаризации сообщений в родительских чатах и последующему обучению модели абстрактивной саммаризации для русского языка на авторском наборе диалоговых данных. В качестве материала выступил родительский чат с учителем в мессенджере WhatsApp. Процесс ручной разметки датасета включал в себя разбиение всех сообщений чата на отдельные диалоги, создание саммари и присвоение тематических меток для каждого разговора. В результате был создан датасет, содержащий 616 диалогов, в общей сложности состоящих из 3380 сообщений. Для файн-тьюнинга были выбраны модели-трансформеры ruT5, mT5 и RuGPT (ruT5 и RuGPT были предварительно обучены на русскоязычном датасете для автоматической саммаризации новостей), а для оценки их качества – метрики ROUGE-1, ROUGE-2, ROUGE-L, BLEU и BERTScore. В результате модели ruT5, дообученной на авторском датасете, удалось превзойти бейзлайн по всем пяти метрикам.