Статья посвящена решению проблемы выбора наиболее информативных регрессоров в неэлементарных линейных регрессиях, включающих в себя в общем случае не только объясняющие переменные, но и все возможные комбинации их пар, преобразованные с помощью бинарных операций min и max. Известно, что оптимальное решение такой задачи может быть достигнуто методом полного перебора всех возможных моделей. Но даже для линейной регрессии он до сих пор остается самым трудоёмким из всех существующих методов отбора, а для неэлементарных линейных регрессий, в которых число регрессоров на порядок больше, его трудоёмкость значительно возрастает. Известно, что быстро получить хоть и не оптимальное зачастую, но хорошее решение позволяет метод включения регрессоров. Учитывая, что в состав неэлементарных линейных регрессий входят не только объясняющие переменные, но и регрессоры, содержащие внутри себя неизвестные параметры, то такие модели требуют разработки новых алгоритмов метода включения. В данной статье состав регрессоров в неэлементарных линейных регрессиях расширен ещё больше за счёт использования бинарных операций со свободным членом. Предложено два алгоритма метода включения. Первый из них реализуется без корректировки входящих в бинарные операции коэффициентов, а второй - с корректировкой. В этой связи вычислительная сложность второго алгоритма выше, чем у первого, но при этом второй позволяет получать более качественные решения. Тестирование алгоритмов проведено на примере моделирования численности безработных и уровня безработицы в Иркутской области. Наилучшие результаты показал второй алгоритм. Полученные высокоточные модели с пятью регрессорами и с коэффициентами детерминации 0,982 и 0,971 превзошли по качеству даже переобученные полиномиальные регрессии с четырнадцатью регрессорами.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.