В настоящее время все более актуальной становится задача обеспечения безопасности и корректности функционирования различных интеллектуальных автоматизированных систем, построенных на основе технологии интернета вещей, которые включают в себя различные двигатели, редукторы, приводные механизмы. Такие системы широко применяются в промышленности, электроэнергетике, на транспорте и в других критически важных сферах современной промышленности. Непрерывная и достоверная диагностика функционирования подобных устройств обуславливает необходимость совершенствования, как аппаратной части сенсоров, используемых для считывания в реальном времени характеристик функционирования деталей системы, так и программных методов эффективной обработки данных, поступающих от сенсоров для своевременного выявления неисправностей в системе. В статье решается задача разработки подхода к автоматизированному обнаружению дефектов материалов на примере роторных механизмов с использованием машинного обучения и визуального анализа данных. Экспериментальная оценка подхода выполняется с помощью небольшого набора данных, собранных от подшипниковых устройств и описывающих, как нормальный режим функционирования, так и три режима с дефектами в подшипниках. Решение этой задачи позволит более быстро, своевременно и с меньшим участием человека выявлять дефекты устройств и материалов в процессе работы системы. Новизной предложенного подхода является сочетание машинного обучения и визуального анализа данных в условиях использования обучающих выборок малого размера. Кроме того, решается задача отбора признаков дефектов - первичных данных, которые необходимо считывать с сенсоров устройств и которые позволяют достоверно выявлять дефекты в системе. Это будет способствовать уменьшению затрат на внедрение встраиваемых сенсоров и средств их автоматической диагностики, на их обслуживание за счет снижения числа используемых сенсоров.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.