Рассматривается сравнительный анализ методов построения виртуальных анализаторов с использованием робастной регрессии, гребневой регрессии, метода ортогональных проекций на скрытые структуры на основе ядра (англ. K-OPLS), метода чередующихся условных математических ожиданий (англ. ACE) и нейросетей прямого распространения. Данные модели в составе виртуальных анализаторов предназначены для оценки значений точек фракционного состава керосиновой фракции - продукта колонны фракционирования - в режиме реального времени. В ходе построения моделей рассмотрен вопрос усреднения значений входных переменных за определенный промежуток времени для привязки к значениям выходных переменных. В отличие от существующих работ, в данном исследовании обучение и тестирование моделей осуществляется на ограниченных по значениям выходной переменной сегментах данных, т. е. в условиях пропусков данных в обучающей выборки. Показано влияние ширины интервала усреднения значений входной переменной на точность оценки получаемых моделей. Также показано, что наименьшее значение средней абсолютной ошибки при оценке точек фракционного состава обеспечивают модели на основе нейронных сетей и K-OPLS при различных вариантах обучения и тестирования.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.