Рассматривается геометрический подход к понятию метрической энтропии. Обоснована возможность такого подхода для класса борелевских вероятностных инвариантных эргодических мер на софических системах, что является первым результатом такой общности для немарковских систем.
Идентификаторы и классификаторы
Данная статья является продолжением работ автора [1, 2], посвященных геометрическому подходу к определению энтропии Колмогорова – Синая. Такой подход был впервые предложен в физической литературе [3], после чего был строго формализован и обоснован для класса марковских систем Б. М. Гуревичем в [4]. Дальнейшее развитие идей работы [4] Гуревичем и С. А. Комечем в [5, 6] позволило распространить геометрическую интерпретацию энтропии на широкий класс синхронизованных систем, но с наложением дополнительного ограничения – условия Комеча (более подробно история вопроса описана в [1]). В работе [1] достигнуты новые продвижения в двух смыслах:
Список литературы
1. Дворкин Г.Д. Геометрическая интерпретация энтропии: новые результаты // Пробл. передачи информ. 2021. Т. 57. № 3. С. 90-101. DOI: 10.31857/S0555292321030062 EDN: WPLDNV
2. Дворкин Г.Д. Геометрическая интерпретация энтропии для систем Дика // Пробл. передачи информ. 2022. Т. 58. № 2. С. 41-47. https://www.mathnet.ru/ppi2367. EDN: DZCGLF
3. Заславский Г.М. Стохастичность динамических систем. М.: Наука, 1984.
4. Gurevich B.M. Geometric Interpretation of Entropy for Random Processes // Sinai’s Moscow Seminar on Dynamical Systems. Providence, RI: Amer. Math. Soc., 1996. P. 81-87.
5. Комеч С.А. Скорость искажения границы в синхронизованных системах: геометрический смысл энтропии // Пробл. передачи информ. 2012. Т. 48. № 1. С. 15-25. http://mi.mathnet.ru/ppi2065. EDN: GNTQMC
6. Гуревич Б.М., Комеч C.А. Скорость деформации границ в системах Аносова и близких к ним // Тр. МИАН. 2017. Т. 297. С. 211-223. DOI: 10.1134/S037196851702011X EDN: ZDKUNX
7. Синай Я.Г. О понятии энтропии динамической системы // ДАН СССР. 1959. Т. 124. С. 768-771.
8. Корнфельд И.П., Синай Я.Г., Фомин С.В. Эргодическая теория. М.: Наука, 1980.
9. Thomsen K. On the Ergodic Theory of Synchronized Systems // Ergodic Theory Dynam. Systems. 2006. V. 26. № 4. P. 1235-1256. DOI: 10.1017/S0143385706000290 EDN: HWDNEP
10. Fiebig D., Fiebig U.-R. Covers for Coded Systems // Symbolic Dynamics and Its Applications (New Haven, CT, 1991). Contemp. Math. V. 135. Providence, RI: Amer. Math. Soc., 1992. P. 139-180.
11. Lind D., Marcus B. An Introduction to Symbolic Dynamics and Coding. Cambridge: Cambridge Univ. Press, 1995.
12. Thomsen K. On the Structure of a Sofic Shift Space // Trans. Amer. Math. Soc. 2004. V. 356. № 9. P. 3557-3619. DOI: 10.1090/S0002-9947-04-03437-3
Выпуск
Другие статьи выпуска
Рассматриваются последовательности {An}+∞n=−∞ элементов произвольного поля F, удовлетворяющие разложениям вида Am+nAm−n=a1(m)b1(n)+a2(m)b2(n), Am+n+1Am−n=a˜1(m)b˜1(n)+a˜2(m)b˜2(n), где a1, a2, b1, b2: Z→F. Доказываются результаты о существовании и единственности таких последовательностей. Полученные результаты используются для построения аналогов криптографических алгоритмов Диффи - Хеллмана и Эль-Гамаля. Задача дискретного логарифмирования ставится в группе (S,+), где множество S состоит из четверок S(n)=(An−1, An, An+1, An+2), n∈Z, а S(n)+S(m)=S(n+m).
Модель сетевого графа является удобным инструментом для анализа сетей передачи информации, где возможность передачи в условиях атаки на объект можно описывать с помощью дробных критических графов, а уязвимость сети можно измерять с помощью варианта параметра изолированной жесткости. Рассматривается как устойчивость сети, так и реализуемость передачи данных при повреждении узлов, и определяется граница на вариант изолированной жесткости для дробных (a, b, n)-критических графов, где параметр n означает количество поврежденных узлов в определенный момент времени. С помощью контрпримера доказывается точность полученной границы на вариант изолированной жесткости. Основной теоретический вывод позволяет находить оптимальное соотношение между производительностью и стоимостью при проектировании топологии сети.
Рассматриваются процессы контактов на локально компактных сепарабельных метрических пространствах с неоднородными по пространству интенсивностями рождения и гибели. Формулируются условия на интенсивности, обеспечивающие существование инвариантных мер этих процессов. Одним из условий является так называемое условие критического режима. Для доказательства существования инвариантных мер использован подход, предложенный в предыдущей работе авторов. Подробно рассматривается маркированная модель контактов с компактным пространством марок (квазивидов), в которой интенсивности как рождения, так и гибели зависят от марок.
Представлены линейные предикторы и каузальные фильтры для дискретных сигналов, имеющих различные виды дегенерации спектра. Эти предикторы и фильтры основаны на аппроксимации идеальных некаузальных передаточных функций каузальными передаточными функциями, представленными многочленами от Z-преобразования дискретной функции Хевисайда.
Покрывающим кодом или покрытием называется множество кодовых слов, такое что объединение шаров с центрами в этих кодовых словах покрывает все пространство. Как правило, задача состоит в минимизации мощности покрывающего кода. Для классической метрики Хэмминга размер минимального покрывающего кода фиксированного радиуса R известен с точностью до постоянного множителя. Аналогичный результат был недавно получен для кодов с R вставками и кодов с R удалениями. В данной статье изучаются покрытия пространства для метрики Левенштейна фиксированной длины, т. е. для R вставок и R удалений. Для R = 1 и 2 доказываются новые нижние и верхние оценки минимальной мощности покрывающего кода, которые отличаются лишь в константу раз.
Предложены каскадный и свитчинговый методы построения совершенных и диаметральных совершенных кодов, исправляющих одну ошибку, в метрике Ли. Рассмотрены ранги и ядра диаметральных совершенных кодов, полученных свитчинговой конструкцией.
Издательство
- Издательство
- ИППИ РАН
- Регион
- Россия, Москва
- Почтовый адрес
- Большой Каретный пер., 19, стр. 1
- Юр. адрес
- Большой Каретный пер., 19, стр. 1
- ФИО
- Соболевский Андрей Николаевич (Директор)
- E-mail адрес
- director@iitp.ru
- Контактный телефон
- +7 (495) 6504274
- Сайт
- http:/iitp.ru