Рассматриваются процессы контактов на локально компактных сепарабельных метрических пространствах с неоднородными по пространству интенсивностями рождения и гибели. Формулируются условия на интенсивности, обеспечивающие существование инвариантных мер этих процессов. Одним из условий является так называемое условие критического режима. Для доказательства существования инвариантных мер использован подход, предложенный в предыдущей работе авторов. Подробно рассматривается маркированная модель контактов с компактным пространством марок (квазивидов), в которой интенсивности как рождения, так и гибели зависят от марок.
Идентификаторы и классификаторы
Процессы контактов широко используются для описания эволюции и предсказания асимптотического поведения в различных моделях популяционной динамики. Учитывая применение процессов контактов при моделировании распространения эпидемических заболеваний или роста популяций, одной из основных задач при рассмотрении этих процессов является вопрос о существовании стационарного режима и доказательство существования инвариантных мер. Процессы контактов на решетке были введены в пионерских работах [1, 2]; см. также монографию [3]. Хотя в большинстве работ процессы контактов рассматривались на решетке, в последние годы все больший интерес вызывает изучение процессов контактов, протекающих в непрерывных пространствах (см., например, [4–6]). Этот класс процессов является частным случаем процессов рождения и гибели с непрерывным временем. Одной из основных особенностей процесса контактов является кластеризация системы, когда частицы группируются в облака высокой плотности, которые расположены на больших расстояниях друг от друга.
Список литературы
1. Harris T.E. Contact Interactions on a Lattice // Ann. Probab. 1974. V. 2. № 6. P. 969-988. DOI: 10.1214/aop/1176996493
2. Holley R., Liggett T.M. The Survival of Contact Processes // Ann. Probab. 1978. V. 6. № 2. P. 198-206. DOI: 10.1214/aop/1176995567
3. Liggett T.M.Interacting Particle Systems. New York: Springer-Verlag, 1985.
4. Kondratiev Yu., Kutoviy O., Pirogov S. Correlation Functions and Invariant Measures in Continuous Contact Model // Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2008. V. 11. № 2. P. 231-258. DOI: 10.1142/S0219025708003038 EDN: LLKUJN
5. Kondratiev Yu.G., Kutoviy O.V., Pirogov S.A., Zhizhina E. Invariant Measures for Spatial Contact Model in Small Dimensions // Markov Process. Related Fields. 2021. V. 27. № 3. P. 413-438. https://math-mprf.org/journal/articles/id1616.
6. Kondratiev Yu., Skorokhod A. On Contact Processes in Continuum // Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2006. V. 9. № 2. P. 187-198. DOI: 10.1142/S0219025706002305 EDN: XLKMFN
7. Kondratiev Yu., Pirogov S., Zhizhina E. A Quasispecies Continuous Contact Model in a Critical Regime // J. Stat. Phys. 2016. V. 163. № 2. P. 357-373. DOI: 10.1007/s10955-016-1480-5 EDN: WQORVJ
8. Pirogov S., Zhizhina E., A Quasispecies Continuous Contact Model in a Subcritical Regime // Moscow Math. J. 2019. V. 19. № 1. P. 121-132. DOI: 10.17323/1609-4514-2019-19-1-121-132 EDN: KYLTAV
9. Nowak M. What Is a Quasispecies? // Trends Ecol. Evol. 1992. V. 7. № 4. P. 118-121. DOI: 10.1016/0169-5347(92)90145-2
10. Pirogov S., Zhizhina E. Contact Processes on General Spaces. Models on Graphs and on Manifolds // Electron. J. Probab. 2022. V. 27. Article no. 41 (14 pp.). DOI: 10.1214/22-EJP765 EDN: QYRCJA
11. Ruelle D. Statistical Mechanics: Rigorous Results. New York: Benjamin, 1969.
12. Lenard A. Correlation Functions and the Uniqueness of the State in Classical Statistical Mechanics // Commun. Math. Phys. 1973. V. 30. № 1. P. 35-44. DOI: 10.1007/BF01646686 EDN: FBLPRE
13. Lenard A. States of Classical Statistical Mechanical Systems of Infinitely Many Particles. II. Characterization of Correlation Measures // Arch. Rational Mech. Anal. 1975. V. 59. № 3. P. 241-256. DOI: 10.1007/BF00251602 EDN: UCOBGK
14. Petrov V.V. Limit Theorems of Probability Theory: Sequences of Independent Random Variables. Oxford: Clarendon; New York: Oxford Univ. Press, 1995.
Выпуск
Другие статьи выпуска
Рассматриваются последовательности {An}+∞n=−∞ элементов произвольного поля F, удовлетворяющие разложениям вида Am+nAm−n=a1(m)b1(n)+a2(m)b2(n), Am+n+1Am−n=a˜1(m)b˜1(n)+a˜2(m)b˜2(n), где a1, a2, b1, b2: Z→F. Доказываются результаты о существовании и единственности таких последовательностей. Полученные результаты используются для построения аналогов криптографических алгоритмов Диффи - Хеллмана и Эль-Гамаля. Задача дискретного логарифмирования ставится в группе (S,+), где множество S состоит из четверок S(n)=(An−1, An, An+1, An+2), n∈Z, а S(n)+S(m)=S(n+m).
Модель сетевого графа является удобным инструментом для анализа сетей передачи информации, где возможность передачи в условиях атаки на объект можно описывать с помощью дробных критических графов, а уязвимость сети можно измерять с помощью варианта параметра изолированной жесткости. Рассматривается как устойчивость сети, так и реализуемость передачи данных при повреждении узлов, и определяется граница на вариант изолированной жесткости для дробных (a, b, n)-критических графов, где параметр n означает количество поврежденных узлов в определенный момент времени. С помощью контрпримера доказывается точность полученной границы на вариант изолированной жесткости. Основной теоретический вывод позволяет находить оптимальное соотношение между производительностью и стоимостью при проектировании топологии сети.
Рассматривается геометрический подход к понятию метрической энтропии. Обоснована возможность такого подхода для класса борелевских вероятностных инвариантных эргодических мер на софических системах, что является первым результатом такой общности для немарковских систем.
Представлены линейные предикторы и каузальные фильтры для дискретных сигналов, имеющих различные виды дегенерации спектра. Эти предикторы и фильтры основаны на аппроксимации идеальных некаузальных передаточных функций каузальными передаточными функциями, представленными многочленами от Z-преобразования дискретной функции Хевисайда.
Покрывающим кодом или покрытием называется множество кодовых слов, такое что объединение шаров с центрами в этих кодовых словах покрывает все пространство. Как правило, задача состоит в минимизации мощности покрывающего кода. Для классической метрики Хэмминга размер минимального покрывающего кода фиксированного радиуса R известен с точностью до постоянного множителя. Аналогичный результат был недавно получен для кодов с R вставками и кодов с R удалениями. В данной статье изучаются покрытия пространства для метрики Левенштейна фиксированной длины, т. е. для R вставок и R удалений. Для R = 1 и 2 доказываются новые нижние и верхние оценки минимальной мощности покрывающего кода, которые отличаются лишь в константу раз.
Предложены каскадный и свитчинговый методы построения совершенных и диаметральных совершенных кодов, исправляющих одну ошибку, в метрике Ли. Рассмотрены ранги и ядра диаметральных совершенных кодов, полученных свитчинговой конструкцией.
Издательство
- Издательство
- ИППИ РАН
- Регион
- Россия, Москва
- Почтовый адрес
- Большой Каретный пер., 19, стр. 1
- Юр. адрес
- Большой Каретный пер., 19, стр. 1
- ФИО
- Соболевский Андрей Николаевич (Директор)
- E-mail адрес
- director@iitp.ru
- Контактный телефон
- +7 (495) 6504274
- Сайт
- http:/iitp.ru