SCI Библиотека

SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…

Результаты поиска: 10 док. (сбросить фильтры)
Книга: Изопериметрические неравенства в математической физике

Книга ставит своей целью перенесение на физические проблемы известной «изопериметрической теоремы», утверждающей, что из всех плоских фигур заданного периметра круг имеет наибольшую площадь. Она содержит очень большое число ярких физических теорем, родственных изопериметрической теореме («из всех плоских мембран заданной площади наименьшую основную частоту имеет круглая мембрана» и др.), иногда довольно неожиданных; наряду с этим здесь имеется большое число недоказанных гипотез и постановок вопросов. В доказательстве авторы широко пользуются наглядными соображениями геометрического характера.
Книга, принадлежащая перу известных американских математиков и педагогов Г. Полиа (или Д. Пойя) и Г. Сеге. Рассчитана на студентов средних и старших курсов математических и физических специальностей, инженеров и научных работников.

Формат документа: pdf, djvu
Год публикации: 1962
Кол-во страниц: 337
Загрузил(а): Ларионова Полина
Язык(и): Русский
Доступ: Всем
Книга: Неравенства

В брошюре различными способами доказываются известные, в том числе из школьной программы, неравенства Коши, Йенсена, Коши—Буняковского. Многие утверждения сформулированы в виде упражнений, решения которых приведены в конце брошюры. Кроме того, приведён список задач для самостоятельного решения.

Текст брошюры представляет собой запись лекции, прочитанной автором 6 октября 2001 года на Малом мехмате МГУ для школьников 9—11 классов (запись А. А. Белкина).

Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников, учителей.

Формат документа: pdf
Год публикации: 2005
Кол-во страниц: 9
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Неравенства

До выхода в свет в 1934 г. английского оригинала предлагаемой русскому читателю книги Г. Харди, Дж. Литтлвуда и Г. Полиа в мировой математической литературе не существовало монографии, посвящённой неравенствам как таковым.

Появление этой книги способствовало повышению интереса к неравенствам среди математиков и вызвало ряд новых работ в этой области. Несмотря на то, что многие из рассмотренных в этой книге неравенств приводятся в качестве вспомогательного аппарата в уже существующих на русском языке книгах по различным вопросам, и несмотря на то, что выбор материала в предлагаемой книге по необходимости ограничен и далеко не содержит всех типов неравенств, применяемых в анализе, книга эта оказалась весьма полезной не только тем читателям, которые заинтересованы в неравенствах как в специальном предмете математического исследования, но и тем, для которых неравенства являются лишь необходимыми орудиями при исследовании других вопросов.

Содержание настоящей книги достаточно полно освещено в предисловии авторов и во введении.

Формат документа: pdf, djvu
Год публикации: 1948
Кол-во страниц: 456
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Неравенства

Авторы книги, известные американские математики, уже знакомы советскому читателю. Э. Беккенбах — по сборнику «Математика для инженеров» (ИЛ, М, 1958), Р. Беллман — по книгам «Теория устойчивости решений дифференциальных уравнений» (ИЛ, М, 1954), «Динамическое программирование» (ИЛ, М, 1960) и др.

Основное содержание их новой книги составляют неравенства, установленные за последние годы и относящиеся к различным разделам математики (матричная алгебра, теория операторов и т. д.). Особый интерес представляет описание новых функционально-аналитических методов поисков и доказательств неравенств.

Систематичность изложения и насыщенность конкретным материалом позволяют использовать книгу как своеобразный справочник для математиков различных специальностей, а также для механиков, физиков и инженеров-исследователей. Она будет полезна преподавателям, аспирантам и студентам математических и физических факультетов университетов, пединститутов и технических вузов, а также работникам вычислительных центров.

Формат документа: pdf, djvu
Год публикации: 1965
Кол-во страниц: 276
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Введение в неравенства

Небольшая книжка известных американских ученых и крупных авторитетов в области прикладной математики Эдвина Беккенбаха и Ричарда Беллмана входит в серию “Новая математическая библиотека”, издаваемую так называемой “Исследовательской группой по школьной математике” Американского математического общества и рассчитанную на самую широкую читательскую аудиторию, начиная со школьников средних классов.

Новые разделы прикладной математики развивались при интенсивном участии Э. Беккенбаха и Р. Беллмана; это вызвало у авторов настоящей книги глубокий интерес и к чисто математическим вопросам теории неравенств, выражением которого явилась их серьезная математическая монография [2*] на эту тему, переведенная ныне и на русский язык.

Совсем иной характер имеет эта небольшая книжка, в которой авторы ограничиваются минимальными материалами, подобранными, с большим вкусом и способными заинтересовать начинающего читателя.

Формат документа: pdf, djvu
Год публикации: 1965
Кол-во страниц: 165
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Неравенства

В курсе математики средней школы учащийся знакомится со свойствами
неравенств и методами их решения в простейших случаях . В этой книжке автор не ставил себе целью изложить основные свойства неравенств, а стремился лишь познакомить учащихся старших классов средней школы с некоторыми замечательными неравенствами , играющими большую роль в разделах высший математики.

Формат документа: pdf, djvu
Год публикации: 1956
Кол-во страниц: 60
Доступ: Всем
Книга: Неравенства

В курсе математики средней школы учащийся знакомится со свойствами неравенств и методами их решения в простейших случаях (неравенства первой и второй степени).

В этой книжке автор не ставил себе целью изложить основные свойства неравенств, а стремился лишь познакомить учащихся старших классов средней школы с некоторыми замечательными неравенствами, играющими
большую роль в различных разделах высшей математики, и применением их к нахождению наибольшего и наименьшего значения величин и к вычислению некоторых пределов.

В книжке приводится 62 задачи, из которых 36 с подробными решениями составляют основное ее содержание, а 26 задач даются в конце $$ 1, 4, 5 мелким шрифтом в качестве упражнений. Решение упражнений читатель найдет в конце книжки.

Самостоятельное решение нескольких трудных задач, несомненно, принесет учащимся большую пользу, чем решение большого числа задач простых.

Поэтому мы предлагаем учащимся обращаться к решениям упражнений только после того, как будет, найдено самостоятельное решение, быть может и отличающееся (что очень хорошо!) от решения, указанного автором.

При доказательстве неравенств и решении задач автор пользовался лишь свойствами неравенств и пределов, изучаемыми в 9 классе средней школы.

Формат документа: pdf, djvu
Год публикации: 1966
Кол-во страниц: 60
Загрузил(а): Афонин Сергей
Доступ: Всем
Книга: Неравенства

В курсе математики средней школы учащийся знакомится со свойствами неравенств и методами их решения в простейших случаях (неравенства первой и второй степени).

В этой книжке автор не ставил себе целью изложить основные свойства неравенств, а стремился лишь познакомить учащихся старших классов средней школы с некоторыми замечательными неравенствами, играющими большую роль в различных разделах высшей математики, и применением их к нахождению наибольшего и наименьшего значения величин и к вычислению некоторых пределов.

В книжке приводится 62 задачи, из которых 36 с подробными решениями составляют основное ее содержание, а 26 задач даются в конце $$ 1, 4, 5 мелким шрифтом в качестве упражнений. Решение упражнений читатель найдет в конце книжки.

Самостоятельное решение нескольких трудных задач, несомненно, принесет учащимся большую пользу, чем решение большого числа задач простых.

Поэтому мы предлагаем учащимся обращаться к решениям упражнений только после того, как будет. найдено самостоятельное решение, быть может и отличающееся (что очень хорошо!) от решения, указанного автором.

При доказательстве неравенств и решении задач автор пользовался лишь свойствами неравенств и пределов, изучаемыми в 9 классе средней школы.

Формат документа: pdf, djvu
Год публикации: 1966
Кол-во страниц: 60
Загрузил(а): Афонин Сергей
Доступ: Всем
Книга: КОНФОРМНО ИНВАРИАНТНЫЕ НЕРАВЕНСТВА

В монографии описаны изопериметрические проблемы и конформно инвариантные интегральные неравенства в плоских и пространственных областях, снабженных гиперболической метрикой Пуанкаре. Предназначена для аспирантов и молодых ученых, интересующихся геометрическим анализом. Библиография: 118 названий.

Формат документа: pdf
Год публикации: 2020
Кол-во страниц: 260
Загрузил(а): Афонин Сергей
Доступ: Всем
Книга: Неравенства

В курсе математики средней школы учащийся знакомится со свойствами неравенств и методами их решения в простейших случаях (неравенства первой и второй степени).

В этой книжке автор не ставил себе целью изложить основные свойства неравенств, а стремился лишь познакомить учащихся старших классов средней школы с некоторыми замечательными неравенствами, играющими большую роль в различных разделах высшей математики, и применением их к нахождению наибольшего и наименьшего значения величин и к вычислению некоторых пределов.

В книжке приводится 62 задачи, из которых 36 с подробными решениями составляют основное ее содержание, а 26 задач даются в конце §§ 1, 4, 5 мелким шрифтом в качестве упражнений. Решение упражнений читатель найдет в конце книжки.

Самостоятельное решение нескольких трудных задач, несомненно, принесет учащимся большую пользу, чем решение большого числа задач простых.

Поэтому мы предлагаем учащимся обращаться к решениям упражнений только после того, как будет найдено самостоятельное решение, быть может и отличающееся (что очень хорошо!) от решения, указанного автором.

При доказательстве неравенств и решении задач автор пользовался лишь свойствами неравенств и пределов, изучаемыми в 9 классе средней школы.

Формат документа: pdf
Год публикации: 1966
Кол-во страниц: 60
Загрузил(а): Афонин Сергей
Доступ: Всем