SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Настоящие очерки только отмечают отдельные вехи развития теории аналитических функций и ни в какой мере не претендуют на полноту. Мы старались в меру сил и имеющихся у нас сведений указывать роль отечественных учёных в развитии теории аналитических функций.
Подходя к советской эпохе, мы встретились с таким разнообразием фактов и идей, что были вынуждены отказаться от сколько-нибудь подробного их рассмотрения и ограничились характеристикой некоторых из направлений научной работы, упомянув лишь немногие имена.
За всеми подробностями, относящимися к успехам теории функций в СССР, мы отсылаем читателя к обзорной статье А. Ф. Бермана и А. И. Маркушевича в сборнике «Математика в СССР за 30 лет», Гос техиздат, 1948. При составлении очерков I и II нами использован текст §§ 4 и 6 «Введения» к нашей книге «Элементы теории аналитических функций» (Ушцевич, 1944).
Выражаю искреннюю признательность редактору этой книги Б. В. Шабату, написавшему по моей просьбе пункты 5.3 и 5.7, В. В. Гуссову, автору исследований истории специальных функций в России, составившему некоторые введения, а также А. Ф. Берману и В. Л. Гончарову, прочитавшим рукопись очерков и сделавшим ряд существенных критических замечаний.
Мнимым количеством, или комплексным количеством, называется всякое выражение вида a + bi, где a и b — какие-нибудь действительные числа, и i — особый символ, ввести который оказалось нужным, чтобы придать алгебре больше общности.
В сущности, на комплексное количество можно смотреть как на систему двух действительных количеств, взятых в определенном порядке. Хотя выражения вида a + bi и не имеют сами по себе никакого конкретного значения, тем не менее, условились применять к ним обыкновенные правила алгебраического вычисления при условии заменять повсюду выражение i² через -1.
Задачник-практикум предназначен для студентов-математиков заочных отделений педагогических институтов. Он составлен в соответствии с действующей программой курса “Математический анализ и теория функций” и охватывает раздел “Теория аналитических функций”.
Значительно большее внимание по сравнению с другими сборниками подобного рода здесь уделено упражнениям, которые могут быть использованы на факультативных занятиях в школе, и упражнениям, позволяющим учителю более глубоко осмыслить отдельные вопросы школьного курса математики.
В начале каждого параграфа указана литература, в которой читатель найдет необходимый минимум теоретических сведений. Студенту-заочнику достаточно воспользоваться одной (любой) из трех книг [1] — [3].