Архив статей журнала
За последние 20 лет методы машинного обучения прошли серьезный этап своего развития и сейчас представляют собой весьма функциональный инструмент для анализа данных. В настоящее время они применяются в любой сфере деятельности человека и помогают решать разнообразные задачи - от кредитного скоринга и прогнозирования цен на товары до распознавания номерных знаков автомобилей и синтеза речи. Наиболее актуальными из них являются задачи классификации и кластеризации объектов. В статье приведен обзор и анализ современных методов, способных решать данные задачи.