SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Уравнения с частными производными 1-го и 2-го порядков при одной неизвестной функции. Уравнения с частными производными 1-го и 2-го порядков при двух и больше неизвестных функциях. Понятие об интегральных уравнениях. Уравнения математической физики. Примеры и задачи №№ 205—300.
В небольшой монографии Ф. Йона с достаточной полнотой обрисованы некоторые новые возможности классического метода плоских волн и сферических средних применительно к дифференциальным уравнениям с частными производными. Можно считать, что в этом направлении книга является дополнением и развитием соответствующих разделов широко известного труда Д. Гильберта и Р. Куранта «Методы математической физики».
В числе наиболее важных вопросов, рассмотренных в книге Ф. Йона, можно назвать: - решение задачи Коши для однородного гиперболического уравнения, - построение фундаментальных решений и изучение дифференциальных свойств решений эллиптических уравнений и систем, - оценка производных решений эллиптических уравнений и др.
Изложение четкое и доступное. Книга будет весьма полезной для студентов старших курсов, аспирантов и научных работников физико-математических специальностей.
Эта статья содержит попытку авторов дать эскиз некоторых идей и методов современной теории линейных дифференциальных уравнений с частными производными.
Она является естественным продолжением содержащейся в предыдущем томе статьи авторов 21, где излагались классические вопросы, и посвящена в основном тем аспектам теории, которые связаны с возникшим в 60-е годы направлением, позже названным микролокальным анализом и включающим в себя теорию и приложения псевдодифференциальных операторов и интегральных операторов Фурье, а также использование языка волновых фронтов обобщённых функций. При этом по необходимости затрагивается и ряд важных вопросов, относящихся к теории, предшествовавшей возникновению микролокального анализа, а иногда и вполне классических. Авторы ни в коей мере не претендуют на полноту.
Эта статья является лишь вводной к серии более детальных статей различных авторов, которые публикуются в этом и последующих томах и будут содержать развернутое изложение большинства затронутых здесь вопросов.
Излагается математическая технология решения линейных и нелинейных краевых задач. На базе методов квазилинеаризации, операционного исчисления и расщепления по пространственным переменным получены точные и приближённые аналитические решения уравнений в частных производных первого и второго порядка. Найдены условия однозначной разрешимости нелинейной краевой задачи и даётся оценка скорости сходимости итерационного процесса. На примере пробных функций приведены результаты сравнения аналитических решений, полученных по предложенной математической технологии, с точным решением краевых задач и с численными решениями по известным методам. Для научных работников и студентов старших курсов физико-математических специальностей.