В работе представлены результаты исследования влияния концентрации пентаоксида тантала в покрытиях, полученных методом плазменного электролитического оксидирования (ПЭО), на их электрохимические свойства и изучена способность данных покрытий к образованию апатитов в условиях in vitro. Согласно результатам анализа электрохимического поведения покрытий в растворе, имитирующем плазму крови человека по минеральному составу (SBF-растворе), модуль импеданса Ta2O5-содержащих ПЭО-покрытий, в среднем более чем на 2 порядка выше по сравнению с модулем импеданса сплава МА8 без покрытия. Введение в состав электролита наночастиц Ta2O5 и увеличение содержания пентаоксида тантала в составе ПЭО-покрытий приводит к снижению их защитных свойств, по сравнению с базовым ПЭО-слоем. Установлено, что первые кластеры апатитов появляются на поверхности ПЭО-покрытия уже после 1 дня выдержки в SBF-растворе. Через 28 дней ПЭО-покрытие полностью покрывается слоем апатитов с пластинчатой морфологией. На 21 сутки выдержки Ta2O5-содержащего ПЭО-покрытия в SBF-растворе концентрация ионов Ca2+ в растворе стабилизируется, что обусловлено достижением равновесия окружающего раствора с образовавшимся слоем апатитов.
Настоящая работа освещает результаты исследований, проведенных с целью определения влияния различных реагентов, используемых при обработке расплава, на температурный коэффициент линейного расширения (ТКЛР) двойных сплавов системы Al-(11÷40)%Si специального назначения. Установлено, что использование в качестве реагента для обработки расплава водного раствора сульфата меди CuSO4 и в качестве модификатора расплава смеси карбонатов щелочноземельных металлов (CaCO3∙MgCO3) позволяет снизить значения ТКЛР всех исследуемых сплавов в рабочем интервале температур. Было показано, что использование паров карбамида для обработки расплава приводит к снижению ТКЛР доэвтектических сплавов во всем температурном интервале испытаний. Установлено, что термическая обработка, заключающаяся в нагреве от 100 до 200 °C в течение 10 часов с последующим охлаждением на воздухе, способствует дальнейшему снижению значений ТКЛР исследуемых сплавов. Было отмечено повышение физико-механических характеристик сплавов Al-Si после модифицирования, что можно объяснить улучшением усвоения водорода и кислорода, вводимых в расплав. Сделано предположение, что частицы тугоплавких оксидов Ca и Mg, содержащихся в смеси, обеспечивают дополнительные многочисленные центры кристаллизации. В результате сделан вывод о том, что экологически безопасная технология модифицирования расплава смесью карбонатов щелочноземельных металлов позволяет снизить температуру перегрева расплава с 1100-1200 °С до 900 °С и сократить продолжительность процесса выплавки с 5-6 до 1-1,5 часов.
В статье рассматривается широкое применение инструментальных сталей AISI H12 и ASTM L6 в промышленном секторе, а также требования к обработке их поверхности. Для увеличения твердости и износостойкости инструментальных сталей, а также решения проблемы недостаточной прочности соединения боридного слоя с основным материалом, предложен метод комплексного насыщения бором и хромом. Борохромирование улучшает твердость и пластичность боридного слоя, а также решает проблему его скалывания и низкой термостойкости. С помощью сканирующего электронного микроскопа (SEM) были исследованы микроструктуры борохромированного слоя и его высокотемпературная устойчивость. Результаты показали, что при увеличении содержания Cr2O3 до 2 %, слой становится более плотным, толщина слоя AISI H12 и ASTM L6 увеличивается до 55,4 мкм и 33,4 мкм соответственно и увеличивает разгаростойкость поверхности. Это исследование предоставляет важные указания и рекомендации для улучшения свойств сталей для штампового инструмента горячего деформирования и увеличения его срока службы.
Комплексно-легированный титановый сплав ВТ22 является высокопрочным сплавом, из которого изготавливают ответственные изделия авиакосмического назначения. Как правило, этот сплав используют в крупнозернистом состоянии и проблемными вопросами являются низкая технологическая пластичность и высокая нестабильность механических свойств материала в изделиях. Наиболее заметно эти проблемы проявляются при изготовлении тонкостенных полых конструкций. Последние можно успешно изготовить сверхпластической формовкой из листовых заготовок с мелко- или ультрамелкозернистой (УМЗ) структурой. УМЗ структура в листовых заготовках сплава ВТ22 может быть получена в результате изотермической прокатки. Однако изотермическая прокатка существенно удорожает производство, делая его экономически непривлекательным. В этой связи исследовали возможность получения УМЗ листов титанового сплав ВТ22 теплой прокаткой на холодных валках при температурах нагрева исходных заготовок в интервале температур 600-750 °С. Результаты проведенных исследований показывают, что листовая прокатка заготовок нагретых до температуры 600 °С позволяет получить УМЗ состояние в титановом сплаве ВТ22 с параметрами зеренно-субзеренной структуры менее 300 нм. Микротвердость полученных листовых заготовок выше на 20 % по сравнению с крупнозернистым сплавом ВТ22. Вытянутость зерен сплава вдоль плоскости прокатки уменьшается со снижением температуры нагрева заготовок перед прокаткой в исследованном интервале температур. Полученные данные могут быть полезными, в частности, для оптимизации условий получения тонких листов с УМЗ или нанокристаллической структурой.
Методами просвечивающей электронной дифракционной микроскопии и рентгеноструктурного анализа проведен сравнительный количественный анализ изменения фазового состава, дефектной субструктуры и перераспределения атомов углерода рельсов доэвтектоидной стали после длительной эксплуатации и деформации сжатием. Исследования рельсов проводились на разном расстоянии от поверхности катания в головке по разным направлениям, а сжатие осуществлялось до степеней 15, 30, 50 %. Показано, что длительная эксплуатация рельсов и деформация сжатием сопровождаются фрагментацией, причем, при выбранных режимах этот процесс идет интенсивнее при сжатии, чем при длительном нагружении. При анализе процесса фрагментации цементитных пластин привлечены представления об одновременном протекании механизмов разрушения движущимися дислокациями и растворения. Из зависимостей изменения объемных долей углерода в цементите и на дефектах кристаллической решетки от выбранных условий нагружения сделано заключение о преимущественной роли деформации сжатием по сравнению с процессом длительной эксплуатации. Выявлены физические причины немонотонного изменения скалярной и избыточной плотности дислокаций от степени деформации при сжатии и расстояния от поверхности головки по центральной оси и радиусу скругления выкружки и более высокие значения скалярной плотности дислокаций по сравнению с избыточной плотностью.
В работе представлены результаты 3D моделирования распределения и накопления дислокаций и малоугловых границ в объеме металлического ГЦК-монокристалла в процессе деформации одноосным сжатием. Расчеты выполнены в модели синтеза дислокационной кинетики и механики деформируемого твердого тела для случаев деформации без учета и с учетом сил торцевого трения. Приведены картины распределения интенсивности пластических деформаций, плотности дислокаций, плотности малоугловых границ в плоскости центрального продольного сечения деформируемого прямоугольного образца. Выявлены три области деформируемого объема кристалла, отличающиеся накоплением деформационных дефектов при наличии сил торцевого трения: торцевая часть кристалла, участки кристалла, прилегающие к свободной поверхности, и центральная часть. Проведена статистическая оценка степени однородности распределения деформационных дефектов в деформируемом объеме.
В работе были получены объемные композитные биоразлагаемые материалы из нанопорошка системы Fe-Cu и гидроксиапатита (ГА). Образцы производились методом аддитивного формирования на основе экструзии материалов. Варьирование порошковой и полимерных частей в фидстоке привело к изменению структурных и механических свойств полученных композитов. Повышение полимерной составляющей в исходном фидстоке от 50 до 60 масс. % способствует уменьшению пористости полученных композитов от 20,6 до 8,9 %. При этом образцы 45Fe-Cu-ГA характеризовались наиболее высокими механическими свойствами в испытании на растяжение: предел текучести σ0,2=110 МПа и предел прочности σв=150 МПа. При этом модуль Юнга у всех образцов сплава близок к значению модуля кортикальной костной ткани (≈ 15 ГПа). Исследование микротвердости показало превышение значений данного параметра чистого железа более чем в 2 раза. Коррозионные испытания продемонстрировали, что добавление минимального количества полимерной части (50Fe-Cu-ГA) показало самую высокую скорость коррозии, что делает его более привлекательным для его применения при изготовлении биоразлагаемого имплантата.
Методами просвечивающей дифракционной электронной микроскопии на тонких фольгах проведены исследования влияния металла наплавки, выполненной сварочной проволокой типа 35Х5ГФНВМ, на структуру подложки из стали 20. Выполнен количественный анализ изменения тонкой структуры материалов подложки и наплавки на различном расстоянии (0,5 и 3,0 мм) от линии сплавления. Определены морфологические составляющие структуры, их объемная доля и фазовый состав. Установлено, что в исходном состоянии сталь 20 представлена пластинчатым перлитом и ферритом. Наплавка сварочной проволокой привела к существенному разрушению пластинчатого перлита, полной фрагментации феррита, выделению мелких частиц цементита на границах и в стыках фрагментов феррита, созданию упруго-напряженного состояния матрицы стали и упрочнению подложки в 1,5 раза.
Поиск и расчетное обоснование новых материалов для ответственных элементов измерительных приборов ведется в современных условиях с применением методов компьютерного моделирования. В статье представлены результаты разработки компьютерной модели для оценки неравномерного температурного поля в поверхностном слое электрического контакта, возникающего из-за выделения Джоулева тепла в предположении неровной поверхности соприкосновения. Предложена концепция микроконтактных точек, пиковое повышение температуры в которых приводят к деградации контактных материалов за счет изменения фазового состава и эффектов упорядочения атомов в кристаллической решетке. Выполнены вычислительные эксперименты с использованием авторской программы, процессор которой использует метод конечных элементов.
В работе представлены результаты исследований свойств покрытий, формируемых в дисперсных электролитах с наночастицами пентаоксида тантала. Полученные данные свидетельствуют о биоактивности и биосовместимости исследуемых покрытий. Наночастицы пентаоксида тантала действуют как центры зародышеобразования фосфатов кальция и существенно ускоряют образование гидроксиапатита и его предшественников на поверхности покрытия. Более высокая шероховатость поверхности образцов и наличие агломератов частиц пентаоксида тантала способствуют повышению скорости формирования слоя апатитов вокруг агломератов по сравнению с базовым ПЭО-покрытием. Подобные свойства делают данные покрытия перспективными для защиты биорезорбируемых имплантатов на основе магниевых сплавов. Согласно in vivo исследованиям на покрытиях содержащих наночастицы Ta2O5, морфология клеток, аналогична контрольным образцам, что свидетельствует о хорошей биосовместимости покрытий. Результаты как СЭМ, так и гистологического анализа демонстрируют высокую биосовместимость образцов с пентаоксидом тантала. Морфология таких покрытий облегчает адсорбцию белков плазмы крови, что способствует врастанию ткани по сравнению с чистым сплавом магния. Покрытия предотвращают непосредственный контакт магниевого сплава с коррозионной средой, существенно снижая интенсивность коррозионного разрушения, что предохраняет прилегающие ткани от повреждений и отслоений, вызванных скоплением газов и чрезмерным подщелачиванием окружающей имплантат среды, и обеспечивает положительный иммунный ответ. Исследования антибактериальных свойств покрытий с наночастицами Ta2O5 не выявили наличия зоны подавления роста бактерий в чашках Петри. Однако пентаоксид тантала мешает образоваться бактериальной пленке на поверхности имплантата, предотвращая бактериальную адгезию, значительно снижая риск развития имплантат-ассоциированных инфекций.
Методами, просвечивающие электронный микроскопии выполнен анализ субструктуры цемента в головке длинномерных рельсов специального назначения категории ДТ400ИК из заэвтектоидной стали после длительной эксплуатации на экспериментально на кольце РЖД (пропущенный тоннаж 187 млн. тонн). Показано, что после эксплуатации пластины цементита искривляются и разделяются ферритными мостиками. В пластинах феррита и цементита формируется дислокационная субструктура: хаотически распределенного и сеченого типа в феррите и упорядоченная в цементе. Отмечена повышенная плотность дислокаций на межфазных границах феррит-цементит по сравнению с объемом ферритных пластин. Указаны два возможных механизма деформационного преобразования зерен пластинчатого перлита: разрушение пластин цементита и вытягивание углерода из решетки карбидной фазы. Указано, что вынос углерода из цементитных пластин происходит наиболее интенсивно вблизи дефектов феррите и цементите. Образованные наноразмерные частицы третичного цементита распределены в ферритных пластинах неравномерно, большая их часть наблюдается в местах расположения ферритных субзерен и межфазных границ. Это приводит к неоднородному дифракционному контрасту на темнопольных изображениях цементных пластин. Выявлена фрагментация пластин феррита и цементита и оценены азимутальные составляющие углов полной разориентации. По всем установленным закономерностям преобразования субструктуры цементита осуществлено сравнение с результатами для рельсов из доэвтектоидной стали.
Исследование посвящено изучению влияния гафния на антирекристаллизационные свойства сплава 1570. В процессе исследования сплав 1570 и его модификации, содержащие 0,2 % и 0,5 % масс. гафния, исследовались в литом и гомогенизированном состояниях при помощи просвечивающей электронной микроскопии. В результате выявлено, что легирование гафнием 0,2 % масс. при отжиге в течение 4 часов при температуре 370 °С приводит к снижению объема выделившихся частиц по сравнению со сплавом 1570. При повышении концентрации гафния до 0,5 % количество частиц продолжает уменьшаться. Теоретические расчеты тормозящей и движущей сил рекристаллизации показывают, что в сплавах, содержащих гафний 0,5 % масс., при высоких параметрах Холомона-Зенера возможно протекание рекристаллизации. Отжиг при температуре 440 °С приводят к увеличению доли и уменьшению размера частиц в сплавах с содержанием гафния. Особенно сильно уменьшается размер частиц и растет их объем в сплаве с содержанием гафния 0,2 %. Таким образом, в сплавах, легированных гафнием, рекристаллизация блокируется при любых рассмотренных в данной работе параметрах Холломона-Зенера. В сплаве без гафния рост температуры отжига, наоборот, приводит к уменьшению количества частиц и увлечению их размера. В результате тормозящая сила несколько снижается, однако ее все равно достаточно для полного торможения процессов рекристаллизации.