Научный архив: статьи

ЛИНЕЙНАЯ АЛГЕБРА И ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ (2023)

В работе рассматриваются особенности преподавания линейной алгебры тем студентам, которые планируют работать в сфере информационных технологий. Отмечается, что все темы, изучаемые при традиционном подходе в большинстве вузов, необходимы, но не достаточны. С развитием искусственного интеллекта выпускники встречаются на работе с машинным обучением и понятием кластеризации множеств. Для решения поставленных задач будущий специалист должен хорошо понимать, как устроена структура пространств и подпространств, что такое расстояние от объекта до подпространства, косинусная мера близости, какие бывают способы задания пространств, какие бывают метрики. В статье предлагается ряд задач с методическими комментариями и описываются способы создания задач для большого количества вариантов.

Издание: АКТУАЛЬНЫЕ ПРОБЛЕМЫ ПРЕПОДАВАНИЯ МАТЕМАТИКИ В ТЕХНИЧЕСКОМ ВУЗЕ
Выпуск: № 10 (2023)
Автор(ы): Гордеева Надежда Михайловна, Попушина Екатерина Сергеевна
Сохранить в закладках
РАЗРАБОТКА АЛГОРИТМА КЛАССИФИКАЦИИ ПРОИЗВОДСТВ ПО ТИПУ ВНУТРИЗАВОДСКОГО КООПЕРИРОВАНИЯ ОСНОВНЫХ И ВСПОМОГАТЕЛЬНЫХ ПРОЦЕССОВ МЕТОДОМ МАШИННОГО ОБУЧЕНИЯ (2024)

Задача рациональной организации вспомогательных процессов на предприятии заключается в снижении их себестоимости путем более глубокой интеграции в основной производственный процесс. Цель статьи заключается в разработке алгоритма классификационного анализа для оценки зависимостей между основными и вспомогательными подразделениями и типологии производственных процессов по уровню внутризаводского кооперирования. В качестве метода определения типа производства предложен метод машинного обучения «Случайный лес» с использованием метаалгоритма обучения машин Бэггинга. Разработаны параметры, описывающие затраты на вспомогательные операции, расходы на ремонтное хозяйство и обслуживание оборудования, уровень технической эффективности производства. Апробация алгоритма на примере химических предприятий позволила выделить три типа производств по характеру внутризаводской кооперации процессов по наиболее информативным параметрам. Для оценки полезности и производительности моделей построены диаграммы кумулятивного подъема, где наиболее продуктивным определен тип со средним уровнем внутризаводского кооперирования. Результаты являются первичной диагностикой организации вспомогательного хозяйства, принятия решений о проведении реинжиниринга процессов с целью усиления внутризаводского кооперирования и снижения уровня затрат.

Издание: ОМСКИЙ НАУЧНЫЙ ВЕСТНИК
Выпуск: № 1 (189) (2024)
Автор(ы): МАЛЫШЕВА Татьяна Витальевна
Сохранить в закладках
Прогнозирование компонент инфляции методами машинного обучения1 (2024)

С задачей прогнозирования инфляции методы машинного обучения справляются не хуже, а зачастую и лучше подходов, основанных на классических эконометрических моделях. Однако, несмотря на наличие временных рядов по ценам для всех товаров и услуг, являющихся отдельными компонентами потребительской корзины, для которой рассчитывается индекс потребительских цен (ИПЦ), и на то, что методы машинного обучения работают точнее с ростом объема данных, в большинстве работ покомпонентные данные ИПЦ не используются. Исследований, посвященных прогнозированию ИПЦ путем агрегации прогнозов индексов цен для отдельных категорий товаров и услуг (bottom-up approach), немного, и на их основании нельзя однозначно утверждать, будет ли агрегированный прогноз точнее, чем прогноз ИПЦ, не использующий покомпонентные данные. Мы показываем на российских данных, что в зависимости от горизонта прогнозирования покомпонентный агрегированный прогноз инфляции может быть до 1,5 раза точнее. Даже при использовании таких ставших уже классическими моделей машинного обучения, как градиентный бустинг или регрессии с регуляризацией, преимущество статистически значимо на горизонтах до полугода. Каждую компоненту инфляции и на каждый горизонт мы прогнозируем отдельной моделью независимо от остальных компонент и от остальных горизонтов.

Издание: ДЕНЬГИ И КРЕДИТ
Выпуск: № 3, Том 83 (2024)
Автор(ы): Латыпов Родион, Ахмедова Елена, Постолит Егор, Микитчук Марина
Сохранить в закладках
СИСТЕМА АВТОМАТИЗИРОВАННОГО АНАЛИЗА ТОНАЛЬНОСТИ ОТЗЫВОВ ПОЛЬЗОВАТЕЛЕЙ (2024)

В статье изложены основные аспекты разработки веб-системы автоматизированного анализа тональности отзывов, представлена целевая функция, описано математическое обеспечение веб-системы. Произведен сравнительный анализ фреймворков парсинга: Selenium, Playwright, BeautifulSoup, Grab, API. Выполнено сравнение модели векторного представления: Bag of Words, TF-IDF, BERT. А также сравнили методы классификации: Логистическая регрессия, Градиентный бустинг, Случайный лес. Описана логика работы программного продукта, определена архитектура системы. Определен набор данных для обучения моделей машинного обучения. В результате разработан веб-сервис СААТО, позволяющий по одной ссылке проанализировать эмоциональность комментариев и откликов.

Издание: НАНОТЕХНОЛОГИИ: НАУКА И ПРОИЗВОДСТВО
Выпуск: № 3 (2024)
Автор(ы): Десятников Алексей Андреевич, Синицын Иван Васильевич
Сохранить в закладках
ИССЛЕДОВАНИЕ ВОЗМОЖНОСТИ ПРИМЕНЕНИЯ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА «AI HS CODE» ДЛЯ ЦЕЛЕЙ ТАМОЖЕННО-ТАРИФНОГО РЕГУЛИРОВАНИЯ (2024)

В статье рассматриваются результаты исследования возможности использования искусственного интеллекта как инструмента в области таможенно-тарифного регулирования. Проведен анализ применения искусственного интеллекта для классификации товаров на примере группы 90 ТН ВЭД ЕАЭС. Авторами описан процесс применения нейронной сети искусственного интеллекта Всемирной таможенной организации (ИИ AI HS Code), которая была обучена на наборе данных таможенных органов нескольких стран. В статье описан порядок работы с ИИ AI HS Code, приведены графические материалы, сгенерированные ИИ AI HS Code для принятия решений в целях таможенно-тарифного регулирования. Целью работы является обобщение опыта, уточнение специфики применения ИИ для классификации товаров в таможенно-тарифных целях. Авторами использованы методы анализа, синтеза и графической интерпретации.

Издание: УЧЕНЫЕ ЗАПИСКИ САНКТ-ПЕТЕРБУРГСКОГО ИМЕНИ В.Б. БОБКОВА ФИЛИАЛА РОССИЙСКОЙ ТАМОЖЕННОЙ АКАДЕМИИ
Выпуск: № 2 (90) (2024)
Автор(ы): Комелова Анна Юрьевна, Федотова Галина Юрьевна
Сохранить в закладках
МЕТОДИКА ПОСТРОЕНИЯ УСТОЙЧИВОЙ СИСТЕМЫ ЗАЩИТЫ НА ОСНОВЕ СОСТЯЗАТЕЛЬНОГО МАШИННОГО ОБУЧЕНИЯ В БЕСПРОВОДНЫХ СЕТЯХ 6G (2023)

Цель исследования: разработка методики аналитической обработки больших массивов данных сервисов и приложений в сетях последнего поколения для обнаружения инцидентов кибербезопасности и построения устойчивых систем защиты на основе состязательного машинного обучения. Метод исследования: анализ современных методов машинного обучения и нейросетевых технологий, синтез и формализация алгоритмов состязательных атак на модели машинного обучения. Результат исследования: в статье предложена методика построения устойчивой системы защиты от состязательных атак в беспроводных самоорганизующихся сетях последнего поколения. Формализованы основные виды состязательных атак, в том числе отравляющие атаки и атаки уклонения, а также описаны методы генерации состязательных примеров на табличные, текстовые и визуальные данные. Проведена генерация нескольких сценариев и исследовательский анализ наборов данных с помощью эмулятора DeepMIMO. Выделены потенциальные прикладные задачи бинарной классификации и прогнозирования затухания сигнала между пользователем и базовой станцией для проведения состязательных атак. Представлена алгоритмизация процессов построения и обучения устойчивой системы от состязательных атак в беспроводных сетях последнего поколения на примере эмулируемых данных.Научная новизна: представлена методика аналитической обработки больших массивов эмулируемых данных сервисов и приложений для обнаружения инцидентов кибербезопасности, которая обеспечивает задел в области исследования вопросов безопасности сложных интеллектуальных сервисов и приложений в инфраструктуре беспроводных сетей последнего поколения.

Издание: ВОПРОСЫ КИБЕРБЕЗОПАСНОСТИ
Выпуск: № 2 (54) (2023)
Автор(ы): Легашев Леонид Вячеславович, Забродина Любовь Сергеевна
Сохранить в закладках
РАЗРАБОТКА НОВЫХ МЕТОДОВ НАНОСКОПИЧЕСКОГО АНАЛИЗА ОРГАНИЧЕСКИХ СТРУКТУР (2024)

Настоящая научная статья посвящена разработке и перспективам внедрения новых методов наноскопического анализа органических структур с применением искусственного интеллекта (ИИ). Обзор существующих методов, таких как сканирующая туннельная микроскопия и атомно-силовая микроскопия, выявляет их преимущества и ограничения. В статье подробно рассматриваются перспективы внедрения ИИ для автоматизации и улучшения процессов анализа, включая распознавание структур, классификацию типов и определение свойств материалов. Обсуждаются преимущества, такие как повышение точности и скорости анализа, а также вызовы, связанные с обучением моделей на ограниченных данных.

Издание: ВОДА: ХИМИЯ И ЭКОЛОГИЯ
Выпуск: № 1 (2024)
Автор(ы): Цамаева Петимат Саидовна, Валеев Сергей Ильдусович, Старовойтова Евгения Валерьевна
Сохранить в закладках
РАЗРАБОТКА МЕТОДОВ МАШИННОГО ОБУЧЕНИЯ ДЛЯ ПРЕДСКАЗАНИЯ ХИМИЧЕСКИХ РЕАКЦИЙ И ОПТИМИЗАЦИИ УСЛОВИЙ СИНТЕЗА (2023)

Научная статья рассматривает актуальные методы машинного обучения для предсказания химических реакций и оптимизации условий синтеза. Сфера химического синтеза является ключевой в науке и промышленности, и внедрение методов машинного обучения представляет собой инновационный подход к решению сложных проблем в этой области. Статья обсуждает применение графовых нейронных сетей, рекуррентных нейронных сетей и генеративных моделей для предсказания реакций с высокой точностью. Также рассматриваются методы оптимизации условий синтеза, основанные на машинном обучении, с акцентом на предсказании оптимальных параметров реакции.

Издание: ВОДА: ХИМИЯ И ЭКОЛОГИЯ
Выпуск: № 11 (2023)
Автор(ы): Заитов Руслан Ильдарович, Дукаев Магомед Ширваниевич, Умархаджиев Магомед-Хабиб Русланович
Сохранить в закладках
ПРИМЕНЕНИЕ БОЛЬШИХ ЯЗЫКОВЫХ МОДЕЛЕЙ ПРИ ОРГАНИЗАЦИИ ПОПОЛНЕНИЯ БАЗЫ ЗНАНИЙ О МЕТОДАХ ОБРАБОТКИ ИНФОРМАЦИИ В СИСТЕМАХ ПРИКЛАДНОЙ ФОТОГРАММЕТРИИ (2024)

Рассмотрены вопросы, связанные с автоматизацией процедуры синтеза систем прикладной фотограмметрии. Такие системы служат для измерения и учета объектов по изображениям и в настоящее время широко применяются в различных областях деятельности, таких как картографирование, археология и аэрофотосъемка. Широкому применению также способствует повышение доступности и мобильности устройств для получения изображений. Все это обусловило проведение активных исследований, направленных на разработку методического обеспечения для систем прикладной фотограмметрии. Отслеживание в ручном режиме появления новых методов и алгоритмов фотограмметрической обработки информации для широкой номенклатуры областей применения достаточно затруднительно, что делает актуальной автоматизацию данной процедуры. Предлагаемое в статье решение основано на использовании базы знаний о методах обработки информации в системах прикладной фотограмметрии, основными элементами которой являются нечеткая онтология предметной области и база данных, что логично, т.к. информация о предметной области может быть достаточно легко структурирована. В качестве основы для онтологии было взято существующее решение, которое было дополнено на основе результатов анализа текущего состояния предметной области. Полученная онтология далее использована для поиска и классификации методов обработки информации в системах прикладной фотограмметрии и заполнения базы знаний. В связи с активизацией разработки новых методов обработки информации в системах прикладной фотограмметрии возникает необходимость модификации онтологии и пополнения базы данных, т. е. пополнения базы знаний. Важным источником информации для этого является Интернет. Для автоматизации поиска данных о методах обработки информации и пополнения базы знаний целесообразно использовать большие языковые модели, благодаря которым упрощается решение нескольких задач в области обработки естественного языка, которые включают кластеризацию и формирование новых сущностей для классификации. Соответствующий метод описан в статье. Для метода приведены результаты тестирования его работоспособности. В рамках решения задач проведён сравнительный анализ больших языковых моделей, в результате которого была вобрана модель RoBERTa.

Издание: ИЗВЕСТИЯ ЮФУ. ТЕХНИЧЕСКИЕ НАУКИ
Выпуск: № 3 (2024)
Автор(ы): Козловский Александр Вячеславович, Мельник Эдуард Всеволодович, Самойлов Алексей Николаевич
Сохранить в закладках
ОЦЕНКА СОСТОЯНИЯ СМАЗКИ ПОДШИПНИКОВ КАЧЕНИЯ С ПРИМЕНЕНИЕМ АЛГОРИТМОВ КЛАССИФИКАЦИИ (2024)

Целью данной работы является решение проблемы внеплановых отказов подшипников качения, установленных на промышленном оборудовании, в результате их неправильного обслуживания в процессе эксплуатации. Известно, что до 50% всех внеплановых простоев промышленного оборудования происходит по причине разрушения подшипников. При этом основной причиной отказа подшипников являются нарушения режима смазки тел качения: избыточное и недостаточное количество смазочных материалов. Эти причины составляют до 36% от общего числа отказов подшипников. В процессе эксплуатации оборудования выявить и предупредить все проблемы со смазкой подшипников очень сложно, по причине большого разнообразия факторов, влияющих на их возникновение. Поэтому, актуальной задачей для исследования, становится разработка автоматизированной рекомендательной системы для управления сервисным обслуживанием промышленного оборудования, с контролем смазки подшипниковых узлов. В работе рассматривается метод классификации состояний подшипников в зависимости от их диагностических параметров: показателей виброскорости, виброускорения и температуры. С этой целью применяются алгоритмы классического машинного обучения: модели KNN, RandomForestClassifier и SVM. Для каждой модели определяются гиперпараметры, позволяющие достигать максимальных результатов во время обучения. В процессе проведения исследования выполнен анализ влияния каждого из диагностических параметров - признаков на показатели работы модели классификации. Понимание, какой показатель работы подшипника будет наиболее важным, позволит выбирать приборы контроля состояния оборудования на производственном предприятии осознанно, для решения конкретных производственных задач. Разработанный алгоритм позволяет качественно, с 98% точностью, производить оценку состояния смазки подшипников качения и выдавать рекомендации по проведению своевременного сервисного обслуживания оборудования. Модель - классификатор планируется использовать в составе комплекса по контролю за техническим состоянием оборудования, расширяя возможности диагностики: помимо сведений о вероятности отказа оборудования и прогнозных сроках службы, комплекс диагностики, совмещенный с предлагаемой моделью, позволит воздействовать на ходимость подшипников, путем улучшения качества их смазки.

Издание: ИЗВЕСТИЯ ЮФУ. ТЕХНИЧЕСКИЕ НАУКИ
Выпуск: № 3 (2024)
Автор(ы): Криницин Павел Геннадьевич, Ченцов Сергей Васильевич
Сохранить в закладках
ИССЛЕДОВАНИЕ МЕТОДОВ ПОСТРОЕНИЯ КАУЗАЛЬНЫХ ГРАФОВЫХ МОДЕЛЕЙ ДЛЯ СЛОЖНЫХ СОЦИОГУМАНИТАРНЫХ СИСТЕМ (2024)

Сложные социогуманитарные системы - это разновидность систем, которые изучаются в социологии, антропологии, экономике, политологии, и других гуманитарных науках. Эти системы характеризуются сложностью взаимодействий между их составляющими элементами, которые могут быть как людьми (индивидами, группами), так и культурными, социальными, экономическими и политическими аспектами. Например, общество как социогуманитарная система состоит из различных элементов, таких как люди, культура, институты, ценности и так далее. Они взаимодействуют между собой, образуя сложную сеть связей и влияний, которая определяет поведение и развитие общества. Чтобы лучше понять такие системы, используются различные подходы, включая системный анализ, социальную сетевую теорию, теорию сложности и другие методы. Эти подходы помогают выявить основные закономерности в функционировании сложных социогуманитарных систем и предсказать их развитие в будущем. В данной статье рассматриваются подходы к выявлению причинно-следственных связей, выделяются основные требования к построению этих связей в контексте сложных социогуманитарных систем, имеющих дело, в основном, со слабоструктурированной информацией, часто в виде естественного языка и текстов. Были определены слабые и сильные стороны выявленных подходов, а также рассмотрены примеры использования современных методов построения графов на разных задачах: выявление рисков в бизнесе, анализ социальных явлений, выявление наличия причинности в текстах. Исследование показало, что наиболее продуктивными являются методы машинного обучения, например языковые модели для извлечения знаний из текста в совокупности с нейросетевыми технологиями и графовым представлениями знаний. Они требуют уверенных знаний математики, статистики и программирования, как минимум на языке Python, имеющих самую внушительную инструментальную поддержку для решения задач машинного обучения. Также, выявление причинности основывается не только на корреляции, но и на других методах, таких как тест Грейнджера, используемый для анализа временных рядов.

Издание: ИЗВЕСТИЯ ЮФУ. ТЕХНИЧЕСКИЕ НАУКИ
Выпуск: № 2 (2024)
Автор(ы): Князев Иван Игоревич
Сохранить в закладках
ПРИМЕНЕНИЕ МАШИННОГО ОБУЧЕНИЯ И ИНТЕЛЛЕКТУАЛЬНОГО АНАЛИЗА ДАННЫХ В АВТОМАТИЗИРОВАННОЙ СИСТЕМЕ НЕРАЗРУШАЮЩЕГО ВИХРЕТОКОВОГО КОНТРОЛЯ ПОВЕРХНОСТНОГО СЛОЯ ДЕТАЛЕЙ ПОДШИПНИКОВ (2024)

Изменение свойств материала в процессе физико-механической обработки может существенно снизить рабочий ресурс производимого изделия, поэтому важно осуществлять контроль качества поверхностного слоя деталей. Для решения данной задачи на подшипниковых предприятиях применяются такие методики неразрушающего контроля, как травление, визуальный, капиллярный, магнитопорошковый, ультразвуковой, вибрационный, вихретоковый методы. Рассматриваются физические основы представленных методик, приводится их сравнительный анализ. Для автоматизации обработки результатов методов неразрушающего контроля поверхностного слоя деталей подшипников в рамках концепции «Индустрия 4.0» могут применяться машинное зрение и подходы цифровой обработки сигналов. С точки зрения производительности и возможности интеграции в производственную систему наиболее перспективным является вихретоковый метод, результатом контроля поверхности данным способом является массив цифровых значений. Развитие современных методов анализа информации позволяет эффективно обрабатывать большое количество данных, а машинное обучение позволяет решать задачи классификации, регрессии и т. д. Приводится методологическое обеспечение разработки и применения автоматизированной системы вихретокового контроля с использованием методов машинного обучения и интеллектуального анализа данных. Рассматриваются работы ученых, посвященные обработке результатов вихретокового контроля различных объектов, в том числе деталей подшипников, отмечается, что ранее не было уделено внимание вопросу обоснованного выбора модели машинного обучения для распознавания дефектов поверхности деталей. Показана возможность применения метода медианной полировки для преобразования вихретокового сигнала. Разработка и внедрение системы распознавания дефектов подшипников на основе методологического обеспечения, представленного в данной работе, могут существенно повысить эффективность контроля качества изделий и оптимизировать технологический процесс.

Издание: ВЕСТНИК АСТРАХАНСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА. СЕРИЯ: УПРАВЛЕНИЕ, ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА И ИНФОРМАТИКА
Выпуск: № 3 (2024)
Автор(ы): Игнатьев Максим Алексеевич
Сохранить в закладках