Нефтехимические заводы оснащены множеством приборов и большим количеством датчиков, которые собирают данные измерений для управления и мониторинга процесса. В то же время исследователи начали использовать большие объемы данных для построения прогнозных моделей, которые назвали виртуальными датчиками. Предложен анализ применения виртуальных датчиков в рамках процесса гидроочистки дизельных фракций. Представлена разработанная авторами классификация виртуальных датчиков, которая помогает определить и выбрать инструменты для мониторинга, что способствует повышению точности, гибкости и эффективности контрольных механизмов производства. Детально изложена процедура разработки виртуальных датчиков, подчеркивается их потенциал как стратегического актива, способного усилить технологическую продуктивность и улучшить конкурентоспособность предприятий. Также освещается разработка структурной схемы системы управления для процесса гидроочистки дизельных фракций, демонстрирующей интеграцию и применение виртуальных датчиков для совершенствования указанного процесса.
В статье показаны возможности применения методов машинного обучения для построения и анализа системы аутентификации на основе динамики нажатий клавиш. В работе обоснована необходимость улучшения многофакторной системы аутентификации. Предложен способ классификации работ поведенческой биометрии для сравнения и использования результатов исследований. Рассмотрены базовые возможности обработки и генерирования динамических и статических признаков динамики нажатий клавиш. Протестированы различные комбинации наборов признаков и выборок обучения, описана лучшая комбинация с равной частой ошибок (Equal Error Rate) 4,7%. Итеративный анализ качества системы позволяет установить важность первых символов последовательности ввода, а также нелинейную взаимосвязь степени ранжирования модели и EER. Высокие показатели, достигнутые бустинговой моделью, свидетельствуют о значительном потенциале поведенческой аутентификации для дальнейшего улучшения, развития и применения. Приводится значимость данного метода, его практическая полезность не только в задаче аутентификации, перспективы развития, включая использование нейросетевых методов и анализ динамики данных. Несмотря на достигнутые результаты, отмечается необходимость дальнейшей работы над моделью, включая разработку дополнительных моделей кластеризации, классификации, изменение набора признаков и построение каскада. Подчеркивается важность исследуемой области, способной принести значительный вклад в развитие информационной безопасности и технологий.
В статье показаны возможности применения семантического анализа постов пользователей социальной сети ВКонтакте для мониторинга и прогнозирования депрессии. Подчеркивается серьезность проблемы депрессии, ее негативное влияние на здоровье и социум, а также актуальность ранней диагностики и помощи. В работе также обоснована необходимость и перспективы анализа данных русскоязычных социальных сетей для предотвращения развития депрессии у пользователей. В статье предложен подход, который позволяет проводить анализ текстовых данных и использовать логистическую регрессию для классификации пользователей по наличию депрессии. Результаты исследования показывают высокую точность модели с использованием логистической регрессии, что представляет потенциал для автоматизации процессов выявления и поддержки пользователей, страдающих депрессией по данным пользовательской информации в социальных сетях. Также приводится значимость данного метода, его практическая полезность для персонализированных интервенций, преимущества и перспективы развития, включая использование нейросетевых методов и анализ динамики данных. Несмотря на достигнутые результаты, отмечается необходимость дальнейшей работы над моделью, включая изучение других методов машинного обучения и учет изменений в психическом состоянии пользователя со временем. Развитие методов прогнозирования депрессии на основе данных социальных сетей, предложенных в статье, является важным направлением, способным принести значительный вклад в области психологии, здравоохранения и информационных технологий.
В работе рассмотрены методы определения авторства любительских сочинений по мотивам популярных произведений литературы и кинематографа. Данные для проведения исследования включают тексты 5 самых популярных тематик онлайн-библиотеки Ficbook. Наиболее распространенной является задача атрибуции с закрытым набором. Относительно практических задач можно предполагать, что не всегда истинный автор анонимного текста будет присутствовать в списке кандидатов. Поэтому процесс определения автора рассматривался как усложненная модификация классической задачи классификации - приведению к виду открытого множества авторов. Предложенные методы основаны на авторской комбинации fastText и One-Class SVM с отбором информативных признаков и статистических оценках мер сходства векторных представлений. Статистические методы оказались наименее эффективны даже для простого, кросс-тематического, случая, в котором данные методы уступают в точности одноклассовому SVM до 15 %. Для той же кросс-тематической задачи средняя точность авторской методики на основе совместного применения fastText и One-Class SVM составляет 85 %. В сложном случае внутри тематической классификации авторов точность представленной методики варьируется от 75 до 78 % в зависимости от тематической группы
В работе рассмотрены методы определения авторства естественных и искусственно-сгенерированных текстов, важных в контексте кибербезопасности и защиты интеллектуальной собственности с целью предотвращения дезинформации и мошенничества. Использование методов определения автора текста обосновано выводами об эффективности рассмотренных в прошлых исследованиях fastText и метода опорных векторов (SVM). Алгоритм отбора признаков выбран на основе сравнения пяти различных методов - генетического алгоритма, прямого и обратного последовательных методов, регуляризационного отбора и метода Шепли. Рассмотренные алгоритмы отбора включают эвристические методы, элементы теории игр и итерационные алгоритмы. Наиболее эффективным методом признан алгоритм, основанный на регуляризации, в то время как методы, основанные на полном переборе, признаны неэффективными для любого множества авторов. Точность отбора на основе регуляризации и SVM в среднем составила 77 %, что превосходит другие методы от 3 до 10 % при идентичном количестве признаков. При тех же задачах средняя точность fastText - 84 %. Было проведено исследование, направленное на устойчивость разработанного подхода к генеративным образцам. SVM оказался более устойчив к запутыванию модели. Максимальная потеря точности для fastText составила 16 %, а для SVM - 12 %.
Проведено аналитическое исследование проблемы предупреждения аварийных ситуаций и предиктивной диагностики оборудования при добыче углеводородов на нефтегазовых месторождениях, а также способов решения данной проблемы путем использования искусственного интеллекта, основанного на глубоких нейронных сетях. Одним из ключевых факторов, сдерживающих развитие систем предиктивной диагностики оборудования, является недостаток данных, описывающих предаварийные ситуации, которые необходимы для качественного обучения нейросетевых моделей. Приводится обзор публикаций и исследований последних лет по тематике анализа телеметрических данных и распознавания аварийных ситуаций. Рассматриваются нейросетевые модели, которые могут быть использованы для прогнозирования выхода из строя насосно-компрессорного оборудования и других агрегатов. Изучены случаи применения нейросетевых моделей, специально обученных для решения данной задачи, а также нейросетевые модели, используемые в иных задачах, но анализирующие схожие структуры данных. Поднимается вопрос переноса обучения, чтобы адаптировать нейросетевые модели, изначально разработанные и обученные для других областей, к использованию в рассматриваемой области, в целях уменьшения объема выборки при обучении промышленного искусственного интеллекта. Проведено сравнение достигнутых результатов, обозначены преимущества и недостатки существующих технических решений.
Процедура рентгенологического анализа в настоящее время позволяет выявить остеоартрит (ОА) на ранних стадиях заболевания. Наличие или отсутствие заболевания выявляется только на той стадии, когда оно уже проявилось и проведена рентгенологическая диагностика. Использование автоматизированных процедур анализа рентгенологических снимков, наличие архивов такой информации с длительной историей позволяют улучшить результаты прогнозирования осложнений у пациентов. В статье описывается опыт разработки приложения компьютерного анализа рентгенограмм, которое на основе методов глубокого обучения позволяет выявлять риски развития остеоартрита тазобедренного сустава. В качестве обучающей выборки используется архив профильного медицинского института. С целью увеличения размера обучающего набора рентгенограмм используется метод аугментации данных, который повышает вариативность исходных данных, в ряде случаев повышает эффективность распознавания. В работе используется конволюционная сеть (U-сеть), предназначенная для сегментации изображений, которая обучается на рентгенограммах конкретного медицинского учреждения. В рамках проекта по сегментации и анализу геометрических характеристик рентгеновских снимков тазобедренных суставов было разработано программное обеспечение, позволяющее автоматизировать распознавание размера суставной щели, что позволяет уточнить диагноз пациента, прогноз развития патологии.
Объектом исследования является технология федеративного обучения, которая позволяет осуществлять коллективное машинное обучение на распределенных обучающих наборах данных без их передачи в единое хранилище. Актуальность данной технологии обусловлена, с одной стороны, давно растущим трендом на использование машинного обучения для решения множества прикладных задач, а с другой - ростом запросов, в том числе законодательных, на приватность и обработку данных ближе к источнику или непосредственно на нем. Основными проблемами при создании систем федеративного обучения являются отсутствие гибких фреймворков для различных сценариев федеративного обучения: большинство существующих решений сосредоточено на обучении искусственных нейронных сетей в централизованной вычислительной среде. Предмет исследования - универсальная архитектура фреймворка для разработки прикладных систем федеративного обучения, позволяющая строить системы для разных сценариев, различных параметров и топологий вычислительной среды, моделей и алгоритмов машинного обучения. В статье рассмотрена предметная область федеративного обучения, даны основные определения и описан процесс федеративного обучения, приведены и разобраны различные сценарии возможных прикладных задач. Проведен анализ наиболее известных на данный момент фреймворков федеративного обучения, а также их применения для возможных сценариев использования. В качестве результата описана архитектура универсального фреймворка, который, в отличие от существующих, может быть использован для разработки прикладных систем федеративного обучения разного типа и разных сценариев использования.
В статье рассматриваются разработанные методы детектирования и классификации объектов в транспортном потоке на данных космической съемки сверхвысокого пространственного разрешения. С появлением в свободном доступе больших объемов спутниковых данных все большую актуальность приобретает развитие методов машинного обучения на основании геопространственных данных, в частности, спутниковых. В настоящей работе обоснован выбор источника данных о транспортных потоках - спутниковых снимков сверхвысокого разрешения, рассмотрены основные проблемы и задачи, связанные с распознаванием и классификацией объектов. Целью автора является разработка цепочки алгоритмов, позволяющей с высокой точностью детектировать и классифицировать объекты в транспортных потоках. Исследования основаны на численной оценке качества работы алгоритмов. В работе используются методы распознавания образов, машинного обучения и обработки цифровых изображений. Научная новизна заключается в уникальном алгоритме извлечения изображений локальных участков улично-дорожной сети, алгоритме определения направления дорожного движения объекта, модернизации алгоритма селективного поиска. Следует подчеркнуть, что используемые данные съемки сверхвысокого разрешения появились в доступе для частного использования относительно недавно.
В статье рассматривается способ автоматизации оценки состояния электросети в удаленных районах России с использованием смарт-структур. Предлагаемый способ реализован в виде мобильного приложения. Смарт-структура, лежащая в основе данного способа, состоит из модулей получения и обработки данных с датчиков, поиска закономерностей характеристик электросети и формирования классификаторов состояний, рекомендаций по ремонту и оптимальному режиму эксплуатации электросети и подстанции. Научная новизна предлагаемого решения заключается в методе анализа и обработки характеристик электросети и их совокупностей. Кроме того, учитываются параметры внешних воздействий в виде природных и техногенных факторов. Метод анализа и обработки информации об электросети и подстанции основан на машинном обучении - логическом анализе данных. Оценка состояния электросети и подстанции важна при исследовании и решении задач прогнозирования изменения состояния электросети, подбора рекомендаций и принятия решений о ремонтных и обслуживающих работах. Метод оценки состояния электросети основан на поиске закономерностей и построении классификаторов и позволяет учитывать все характеристики и параметры электросети, их совокупность и связи между ними. Он также дает возможность анализировать и получать закономерности для неполных и неточных данных, с чем достаточно часто приходится сталкиваться в реальных электросетях. Метод может быть использован при проектировании и обслуживании электросетей и подстанции в труднодоступных и удаленных регионах Российской Федерации. Предлагаемая редукция закономерностей характеристик и их совокупностей на основе их рекуррентной конъюнкции позволяет получать оптимальные классификаторы состояний электросети и подстанции с высокой интерпретируемостью и обобщенностью, что увеличивает точность оценки состояния электросети и, как следствие, точность прогноза поведения, рекомендаций и принятия решений о ремонтных работах и оптимальном режиме эксплуатации.
В статье представлен метод классификации изображений с использованием, помимо базовой нейронной сети, дополнительной, способной адаптивно концентрироваться на классифицируемом объекте изображения. Задача дополнительной сети является задачей о контекстном многоруком бандите и сводится к предсказанию такой области на исходном изображении, при вырезании которой в процессе классификации возрастет уверенность базовой нейронной сети в принадлежности объекта на изображении правильному классу. Обучение дополнительной сети происходит с помощью методов обучения с подкреплением и стратегий достижения компромисса между эксплуатацией и исследованием при выборе действий для решения задачи о контекстном многоруком бандите. На подмножестве набора данных ImageNet-1K проведены различные эксперименты по выбору архитектуры нейронной сети, алгоритма обучения с подкреплением и стратегии исследования при обучении. Рассмотрены такие алгоритмы обучения с подкреплением, как DQN, REINFORCE и A2C, и такие стратегии исследования, как -жадная, -softmax, -decay-softmax и метод UCB1. Большое внимание уделено описанию проведенных экспериментов и обоснованию полученных результатов. Предложены варианты применения разработанного метода, демонстрирующие увеличение точности классификации изображений по сравнению с базовой моделью ResNet. Дополнительно рассмотрен вопрос о вычислительной сложности данного метода. Дальнейшие исследования могут быть направлены на обучение агента на изображениях, не задействованных при обучении сети ResNet.
Статья посвящена изучению возможности применения машинного обучения в медико-психологическом сопровождении военнослужащих иностранных государств. Машинное обучение является ветвью искусственного интеллекта. Проведен анализ литературы в базе цитирования PubMed. Выполнялись запросы по ключевым словам: «искусственный интеллект, военнослужащий» и «машинное обучение, военнослужащий» в различных вариантах написания. Из 291 статей отобрано 47, соответствующих тематике медико-психологического сопровождения военнослужащих. В эффективном проведении медико-психологического сопровождения военнослужащих, преимущественно связанного с боевым применением войск, в большей степени заинтересованы военные ведомства США, Дании и Великобритании. Наиболее стабильно учеными применяется методы логистической регрессии, нейронные сети и дерево решений. На данный момент больший интерес у исследователей вызывает применение метода случайного леса, нейронных сетей и ансамблевых методов. Технологи машинного обучения применяются на различных по численности группах обследованных: от 145 до 975057 человек, при расчетах опираются на совокупность предикторов, обладают высокой прогностической способностью, позволяют проводить мероприятия медико-психологического сопровождения и отбора групп риска с высокой эффективностью. Тем не мене, возникает опасность стигматизации определенных групп людей, особенно в случае ложноположительного отнесения человека в группу риска.