Численная модель образования аневризмы сосудистого протеза (2024)

Исследование с помощью численного моделирования биомеханики имплантируемых медицинских изделий для сердечно-сосудистой хирургии является ценным инструментом для понимания глубинных механизмов клинических осложнений, возникающих при их применении.

Цель: описание и результаты применения численного метода моделирования аневризматического выбухания стенки сосудистого протеза на основе имитации деградации ее механических свойств.

Материал и методы: Моделирование осуществляли на примере трехмерной компьютерной модели, полученной путем высокоточного томографического сканирования участка сосудистого биопротеза «КемАнгиоПротез» (ЗАО «НеоКор», Россия). На основе полученной 3D-модели путем подключения специализированного скрипта в среде Abaqus/CAE (Dassault systemes, США) имитировали падение модуля упругости (от 100 до 10%) при возникновении запороговых напряжений в материале с накоплением пластической деформации.

Результаты. В ходе приложения 150 условных циклов давления показано, что модель реализует заложенный
функционал и вызывает выбухание сосудистой стенки до 0,7 мм в радиальном направлении при значительной
деградации механических свойств (на 90% относительно исходного модуля упругости) в результате длительного
воздействия давлением. Пластическая деформация составила максимально 0,55%.
Заключение. Исследованный в настоящей работе метод моделирования деградации свойств сосудистой стенки про-
демонстрировал возможность качественной и количественной оценки областей патологического аневризмообразова-
ния численными инструментами. Метод позволяет визуализировать участки выбухания и способен стать ценным ин-
струментом для дополнения существующих подходов к исследованию сосудистых протезов, особенно биологического
происхождения.

Издание: СИБИРСКИЙ ЖУРНАЛ КЛИНИЧЕСКОЙ И ЭКСПЕРИМЕНТАЛЬНОЙ МЕДИЦИНЫ
Выпуск: № 1, Том 39 (2024)
Автор(ы): Клышников Кирилл Юрьевич, Овчаренко Евгений Андреевич, Глушкова Татьяна Владимировна, Онищенко Павел Сергеевич, Резвова Мария Александровна, Костюнин Александр Евгеньевич, Акентьева Татьяна Николаевна, Согоян Нерсес Корюнович, Барбараш Леонид Семенович
Сохранить в закладках
Влияние начальной степени перегрева на эволюцию струи жидкого азота при истечении в вакуумную камеру (2024)

Исследуется нестационарный процесс истечения жидкого азота через коническое сопло при разгерметизации камеры высокого давления. Для описания процесса принята двухфазная пространственная осесимметричная модель парожидкостной смеси в двухтемпературном, однодавленческом, односкоростном приближениях, учитывающая неравновесные процессы испарения и конденсации. Интенсивность фазового перехода зависит от числа и радиуса пузырьков, степени перегрева по температуре, теплоты парообразования, коэффициента теплопроводности и чисел Нуссельта и Якоба. Исследована эволюция вскипания струи жидкого азота в области криогенных температур в зависимости от различных начальных условий. Проанализировано влияние степени перегрева на угол распыления струи. Верификация разработанного численного метода оценена путем сопоставления с экспериментальными данными.

Издание: ВЕСТНИК БАШКИРСКОГО УНИВЕРСИТЕТА
Выпуск: Том 29 № 1 (2024)
Автор(ы): КОРОБЧИНСКАЯ ВАЛЕРИЯ АЛЕКСАНДРОВНА
Сохранить в закладках
МОДЕЛИРОВАНИЕ ВЗАИМОДЕЙСТВИЯ ВИХРЕВОГО КОЛЬЦА С НОРМАЛЬНО РАСПОЛОЖЕННОЙ ПЛОСКОЙ ПРЕГРАДОЙ (2024)

Необходимость развития моделей и методов расчета нестационарных течений газа и жидкости с концентрированной завихренностью обусловливается широким распространением такого рода течений в природе и технике.

Рассматривается численное моделирование формирования вихревого кольца, его распространения и взаимодействия с плоской преградой, ориентированной по нормали к направлению перемещения кольца. Обсуждается построение модели виртуального генератора вихревых колец и выбор комплекса параметров, описывающих генерирующий импульс (продолжительность импульса и его амплитуда).

Расчетная область состоит из внутренней области генератора вихревых колец и область внешнего пространства за его срезом, в которой происходит формирование и движение вихревого кольца.

Для численных расчетов применяются нестационарные уравнения Навье–Стокса в осесимметричной постановке, для дискретизации которых используется метод конечных объемов.

Для моделирования течения, образующегося при движении поршня в трубе,
на левом торце генерирующей трубки используются нестационарные граничные условия, описывающие изменение массового расхода во времени.

Приводятся распределения давления по преграде и изменение продольной силы, действующей на преграду, во времени, а также изменение характеристик вихревого кольца при его взаимодействии с преградой.

Результаты численных расчетов сравниваются с данными физического эксперимента. Приводится качественная картина течения, возникающего при приближении вихревого кольца к стенке, а также обсуждаются ключевые особенности потока и критические точки, которые формируются при взаимодействии вихревого кольца со стенкой.

Издание: ФУНДАМЕНТАЛЬНАЯ И ПРИКЛАДНАЯ ГИДРОФИЗИКА
Выпуск: № 1, Том 17 (2024)
Автор(ы): Волков Константин Николаевич, ЕМЕЛЬЯНОВ ВЛАДИСЛАВ НИКОЛАЕВИЧ, КАПРАНОВ ИЛЬЯ ЕВГЕНЬЕВИЧ
Сохранить в закладках
УПРАВЛЕНИЕ МОЩНОСТЬЮ ЭНЕРГОВЫДЕЛЕНИЯ НИЗКОТЕМПЕРАТУРНЫХ ЯДЕРНЫХ РЕАКЦИЙ (2015)

Представлены новые математические результаты, открывающие возможность решения широкого класса задач микромира на характерных для атома масштабах расстояний и времен. Новый подход позволяет, в том числе, детальное количественное изучение динамики процессов, происходящих при ядерных реакциях, и управления ими с целью повышения мощности высвобождения энергии. Дан анализ фундаментальных основ математической теории физического вакуума (эфира), базирующийся на сопоставлении со вторым законом Ньютона и классическими уравнениями механики сплошной среды. Сформулированы математические задачи, описывающие динамику процесса образования мезоатома водорода из протона и мюона. Рассмотрена задача управления этим процессом. Кратко описан алгоритм численного решения задач динамики эфира. Проиллюстрировано его применение.

Издание: СЛОЖНЫЕ СИСТЕМЫ
Выпуск: № 2 (15) (2015)
Автор(ы): Зайцев Федор Сергеевич, Магницкий Николай Александрович
Сохранить в закладках
ЧИСЛЕННАЯ МОДЕЛЬ ТЕЧЕНИЯ АЭРОЗОЛЯ, ОБУСЛОВЛЕННОГО ВЗАИМОДЕЙСТВИЕМ ЧАСТИЦ И ГАЗА (2021)

В работе моделируются течения неоднородной среды, состоящей из газа и дисперсных включений. Целью исследования являются аэрозоли – взвешенные в газе твердые частицы или жидкие капли. Математическая модель течения сложной среды состоит из уравнений динамики несущей компоненты-газа и уравнений динамики дисперсной компоненты. Система уравнений, описывающая движение каждой компоненты смеси включает в себя уравнения непрерывности массы, импульса и энергии. Непрерывность импульса несущей фазы описывается одномерным уравнением Навье-Стокса. Межфазное взаимодействие определялось известными из литературы соотношениями. Динамика смеси моделировалась в одномерном приближении. Уравнения математической модели интегрировались явным конечно-разностным методом. Для подавления численных осцилляций к полученному решению применялась схема нелинейной коррекции сеточной функции.

Издание: СЛОЖНЫЕ СИСТЕМЫ
Выпуск: № 1 (38) (2021)
Автор(ы): Тукмаков Дмитрий Алексеевич
Сохранить в закладках