SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества научной социальной сети. Здесь хранятся все материалы с открытым доступом. Внесите свой вклад в общую библиотеку добавив больше книг и статей в свой раздел «Моя библиотека» с открытым доступом.
свернутьSciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Книга Флюгге представляет собой своеобразное изложение квантовой механики на базе анализа задач и примеров. Она охватывает почти все разделы квантовой механики, нашедшие большое практическое применение. Внимательно читая книгу Флюгге, можно не только изучить основы квантовой механики, но и научиться применять ее к конкретным задачам.
Книга разделена на два тома. Второй том состоит из пяти глав (III—VII). Гл. III посвящена движению как одной (часть А), так и нескольких (часть Б) нерелятивистских частиц со спином 1/2. Глава IV по существу представляет собой дальнейшее развитие гл. III.
В ней исследуется движение очень большого числа частиц (электронный газ в металле, модель атома Томаса—Ферми и т. д.). В гл. V вошли нестационарные задачи, в гл. VI — задачи и примеры, связанные с релятивистским уравнением Дирака, а в последнюю, гл. VII — элементы теории вторичного квантования, включая квантовую теорию излучения. Книга снабжена математическим приложением, которое посвящено специальным функциям и некоторым интегралам, часто встречающимся в квантовой механике.
Книга полезна студентам и преподавателям, а также широкому кругу физиков-экспериментаторов, не обладающих достаточным опытом выполнения конкретных квантовомеханических расчетов.
Книга Флюгге представляет собой своеобразное изложение квантовой механики на базе анализа задач и примеров. Она охватывает почти все разделы квантовой механики, нашедшие большое практическое применение. Внимательно читая книгу Флюгге, можно не только изучить основы квантовой механики, но и научиться применять ее к конкретным задачам.
Книга разделена на два тома. Первый том состоит из двух глав. Первая глава посвящена основным принципам квантовой механики, а вторая — анализу многочисленных задач, связанных с движением одной бесспиновой элементарной частицы.
В задачах, посвященных проблеме рассеяния, приводится расчет фазовых сдвигов для парциальных волн, рассматриваются уравнение Калоджеро и полюсы Редже. Всё это впервые излагается в учебной литературе.
Книга полезна студентам и преподавателям, а также широкому кругу физиков-экспериментаторов, не обладающих достаточным опытом выполнения конкретных квантовомеханических расчетов.
Оригинальный курс квантовой механики, написанный на основе лекций известного американского физика, лауреата Нобелевской премии Р. Н. Фейнмана.
От всех существующих изложений данная книга отличается как исходными посылками, так и математическим аппаратом: в качестве отправного пункта принимается не уравнение
Шредингера для волновой функции, а представление о бесконечномерном интегрировании по траекториям.
Это позволяет наглядным и естественным образом связать квантовое и классическое описания движения. Формализм новой теории подробно развит и проиллюстрирован на примере ряда традиционных квантовых задач (гармонический осциллятор, движение частицы в электромагнитном поле и др.).
Книга представляет интерес для широкого круга физиков — научных работников, инженеров, лекторов, преподавателей, аспирантов. Она может служить дополнительным пособием по курсу квантовой механики для студентов физических специальностей.
На первый взгляд вам может показаться, что обладающий небольшой энергией электрон с превеликим трудом протискивается через твердый кристалл. Атомы в нем уложены так, что их центры отстоят один от другого лишь на несколько ангстрем, а эффективный диаметр атома при рассеянии электронов составляет примерно 1Å или около этого.
Иначе говоря, атомы, если их сравнивать с промежутками между ними, очень велики, так что можно ожидать, что средний свободный пробег между столкновениями будет порядка нескольких ангстрем, а это практически равно нулю. Следует ожидать, что электрон почти тотчас же влетит в тот или иной атом. Тем не менее перед нами самое обычное явление природы: когда решетка идеальна, электрону ничего не стоит плавно пронестись сквозь кристалл, почти как сквозь вакуум.
Странный этот факт — причина того, что металлы так легко проводят электричество; кроме того, он позволил изобрести множество весьма полезных устройств.
«Фейнмановские лекции по физике» подходят к концу. Настоящий, восьмой, и следующий, девятый, выпуски, составляющие третий том американского издания, завершают курс и приводят читателя к идеям и задачам современной квантовой механики.
Квантовая механика считается трудной наукой. И это правда: ее методы и понятия еще очень далеки от наглядности. Чтобы рассказать о ней понятно и увлекательно, надо совмещать талант педагога и большой опыт исследователя.
Обычно барьером к изучению квантовой механики служит ее математический аппарат. Чтобы научиться решать квантовомеханические задачи, надо знать дифференциальные уравнения в частных производных, свободно обращаться со специальными функциями и уметь делать многое другое.
В основу книги положены лекции, которые в течение ряда лет читаются студентам математических специальностей математико-механического факультета Ленинградского университета. От имеющихся учебников квантовой механики книга отличается тем, что она ориентирована в основном на математическую аудиторию.
В связи с этим большее внимание уделяется общим вопросам квантовой механики и ее математическому аппарату. По-иному, чем это принято в физической литературе, излагаются основы квантовой механики, подробно описана взаимосвязь квантовой и классической механик, включены параграфы, посвященные применению теории представлений групп и математическим вопросам квантовой теории рассеяния.
Кроме студентов-математиков книга может быть полезна также студентам, специализирующимся в теоретической физике, которым она позволит взглянуть на квантовую механику с новой для них точки зрения.
Книга японского физика-теоретика Умэлзава посвящена квантовой теории поля и написана с учетом исследований, проведенных японскими теоретиками.
После краткого исторического очерка рассматриваются уравнение Дирака, обобщенное релятивистское волновое уравнение, квантование волновых уравнений для свободных полей и с учетом взаимодействия, теория возмущений, теория перенормировок и некоторые другие вопросы.
Книга рассчитана на физиков и математиков, интересующихся современными проблемами теоретической физики, и является хорошим дополнением к вышедшим на русском языке другим монографиям по квантовой теории поля.
Излагаются важные применения квазиклассического приближения к теории квантовомеханического углового момента. Выводятся удобные формулы для сферических функций, D-функций, коэффициентов Клебша — Гордона или 3j- и 6j-символов Вигнера.
В приложении описывается вывод формул «сшивания» в одномерном классическом приближении. Кроме того, решаются важные задачи о потенциальной яме, потенциальном барьере, двух потенциальных ямах, одномерном периодическом потенциале.
Книга предназначена студентам и аспирантам, углубленно изучающим курс квантовой механики.
В книге дано обстоятельное и систематическое изложение основ нерелятивистской квантовой механики, предназначенное для лиц, впервые знакомящихся с предметом. В первой главе в качестве введения в квантовую механику рассмотрена специфика физики микрообъектов.
Во второй главе на основе представлений об амплитудах вероятностей рассмотрены вопросы физики микровелений (интерференция амплитуд, принцип суперпозиции, специфика измерительного акта, причинность в квантовой механике); подробно проанализированы простейшие квантовомеханические системы — микрообъекты с двумя базисными состояниями.
В третьей главе рассмотрен аппарат квантовой механики как синтез физических идей и теории линейных операторов. Для демонстрации работы аппарата приведен ряд специально отобранных примеров и задач.
Предназначается для студентов технических и педагогических вузов, а также может быть использована инженерами различного профиля.
Элементарные частицы, их свойства, их отношения друг к другу все больше оказываются за последние годы в сосредоточии интересов принципиальных физических исследований. Единственная до сих пор теория, которой мы можем воспользоваться для описания поведения элементарных частиц, — это квантовая теория волновых полей.
Хотя эта теория и представляет собой одну из фундаментальнейших теорий, которыми мы владеем, — она не только приводит к единому пониманию элементарной квантовой механики, но и является первой теорией, объединяющей квантовую теорию и специальную теорию относительности, — она все еще не стала общим достоянием всех физиков.
Частью это происходит, быть может, из-за предъявляемых ею высоких математических требований, но частью и из-за того, что большинство работ в этой области физического содержания теории заслоняется математическим формализмом.