В статье доказана эффективность обработки трением с перемешиванием околошовной зоны сварного соединения стали 09Г2С твердосплавным инструментом со сферическим наконечником радиусом 10 мм с нормальной силой 3000 Н, частотой вращения 2500 об/мин и подачами 50, 75 и 100 мм/мин. В процессе обработки смешанная структура верхнего бейнита, видманштеттова феррита и зерен феррита изменяется на глобулярную феррито-перлитную структуру при измельчении зерна в зоне перемешивания до 96 %. Продемонстрировано практическое применение обработки трением с перемешиванием инструментом со сферическим наконечником для упрочнения околошовной зоны сварного соединения стали 09Г2С. В результате обработки пределы текучести и прочности повысились на 15,5 и 23,3 % соответственно, относительное удлинение увеличилось на 78,6 %, максимальный зафиксированный средний прирост микротвердости составил 171 %.
Настоящая работа посвящена исследованию влияния напряженно-деформированного состояния горячекатаного прутка из титанового сплава Ti–39Nb–7Zr на микроструктуру и свойства при ротационной ковке. Ротационная ковка рассматривается как перспективный метод интенсивной пластической деформации, обеспечивающий формирование ультрамелкозернистой структуры, равномерное распределение пластической деформации и улучшение свойств сплава.
Для определения напряженно-деформированного состояния разработана конечно-элементная модель, а именно: произведено полное воссоздание геометрии заготовки, определение материалов и их свойств, генерация сетки конечных элементов, настройка решателя модели и назначение граничных условий и нагрузок. Моделирование проводилось с использованием метода конечных элементов, что позволило учесть сложные трехмерные траектории движения инструментов и распределение деформаций в процессе РК. Механические свойства материала были определены экспериментально и использованы для построения модели упрочнения. При моделировании учитывалось поведение материала при нагреве перед деформацией на температуру 450 °C.
Результаты моделирования показали, что максимальные напряжения в прутке после ротационной ковки достигают 955 МПа в зоне контакта с инструментом. Анализ поперечно-го сечения образца выявил концентрические зоны с равномерным распределением напряже-ний и остаточные продольные сжимающие напряжения 0yy = 200 МПа. Продольное распре-деление напряжений демонстрирует высокие напряжения в зоне контакта ковочного инструмента и градиент напряжений от зоны контакта к периферии образца.
Исследование микроструктуры сплава после ротационной ковки показало наличие значительных пластических деформаций и высокую плотность дислокаций в поверхностной зоне. Микротвердость материала увеличилась до 350 HV в поверхностной зоне, по сравне-нию с 250 HV в центральной части образца. Ротационная ковка приводит к формированию текстуры и анизотропии механических свойств, что подтверждается измерениями модуля упругости, который варьируется от 70 до 90 ГПа по сечению прутка.
Цель работы заключалась в разработке многокомпонентной динамической 3D-модели для моделирования процессов ротационной ковки прутка из титанового сплава Ti–39Nb–7Zr с использованием программного пакета Ansys Mechanical. В качестве материала исследования использовался горячекатаный в β-области пруток из биосовместимого сплава Ti–39Nb–7Zr, произведенный на ПАО «Корпорация ВСМПО-АВИСМА».