23 ноября 2023 года исполнилось бы 90 лет Салахитдинову Махмуду Салахитдиновичу — видному учёному-математику, доктору физико-математических наук, профессору, академику АН Республики Узбекистан.
Исследованы вопросы приближённой управляемости систем, описываемых эволюционными уравнениями в банаховых пространствах, разрешёнными относительно дробной производной Хилфера. Оператор при искомой функции предполагается ограниченным. Получен критерий управляемости за фиксированное и за свободное время. Абстрактный результат использован при рассмотрении одного класса распределённых систем управления дробного порядка по времени.
Исследуется однозначная разрешимость линейных обратных коэффициентных задач для эволюционного уравнения в банаховом пространстве с производной Капуто Фабрицио. Оператор при неизвестной функции в уравнении предполагается ограниченным, уравнение снабжено условием Коши. Для обратной задачи с постоянным неизвестным коэффициентом и с интегральным в смысле Римана Стилтьеса условием переопределения, включающим в себя условие финального переопределения как частный случай, получен критерий корректности. Достаточные условия однозначной разрешимости и оценка корректности на решение получены для линейной обратной задачи с зависящим от времени неизвестным коэффициентом. Полученные абстрактные результаты использованы при исследовании обратных задач с неизвестным коэффициентом, зависящим только от пространственных переменных или только от времени, для уравнений с многочленами от самосопряжённого эллиптического дифференциального оператора по пространственным переменным.
25 октября 2024 года исполняется 90 лет со дня рождения академика АН Республики Узбекистан Тухтамурада Джураевича Джураева, известного ученого, специалиста по дифференциальным уравнениям и математическим задачам механики, государственного деятеля науки и образования Узбекистана
We analyze the metrical Bochner criterion and a new class of multi-dimensional metrically Stepanov almost periodic type functions. We clarify the main structural properties for the introduced classes of functions, including the Bochner criterion, and provide certain applications to Doss-p-almost periodic functions. We also study the extensions of almost periodic sequences and briefly explain how we can apply the established theoretical results to the abstract Volterra integro-differential equation
We consider several new classes of metrically ρ-almost periodic type functions F: I ×X →Y, where ∅ = I ⊆ Rn, X is an arbitrary non-empty set and Y is a sequentially completelocally convex space. We briefly explain how the introduced notion can be useful in the study of qualitative analysis of solutions for some classes of the abstract Volterra integro-differential inclusions in locally convex spaces.
The issues of the unique solvability of a Cauchy type problem for a quasilinear equation in a Banach space with several minor fractional derivatives in the nonlinear part and with a linear operator generating an analytical resolving family of operators of a linear homogeneous equation are investigated. Using the Banach contraction mapping theorem, the existence and uniqueness of local and global solutions in specially constructed H¨older type spaces is proved. Abstract results are used for the study of an initial boundary value problem for a modified time-fractional order system of the phase field equations.