SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества научной социальной сети. Здесь хранятся все материалы с открытым доступом. Внесите свой вклад в общую библиотеку добавив больше книг и статей в свой раздел «Моя библиотека» с открытым доступом.
свернутьSciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Книга английских математиков, дающая краткое введение в качественную теорию дифференциальных уравнений и ее приложений к системам, зависящим от времени. Авторы знакомят читателей с методами получения результатов и показывают, как их применять. Помимо классических приложений в области механики и электротехники, приведены примеры из области экологии, уфологии, экономики и медицины. Для математиков-прикладников, преподавателей, аспирантов и студентов вузов.
▫Настоящая книга - классический учебник по дифференциальным уравнениям и вариационному исчислению для студентов физических и физико - математических факультетов университетов. В основу книги положены лекции, которые автор в течение ряда лет читал на физическом факультете МГУ. Цель данного учебника - способствовать глубокому усвоению теории с помощью подробно решенных примеров и задач разного уровня сложности: от простых до самых сложных и нетривиальных։.
Книга состоит из двух независимых частей. В первой части подробно изложены методы интегрирования дифференциальных уравнений и простейшие способы исследования их решений; вторая часть знакомит читателя с методами решения различных вариационных задач. Каждая глава снабжена задачами для самостоятельного решения. Книга будет полезна и интересна и тем, кто только начинает знакомство с предметом, и тем, кто стремится углубить свои знания в этой области.
В книге рассмотрены методы и средства изменения в лабораторной практике. Дана классификации основных конструктивных материалов. Описаны различные способы обработки материалов. Приведён широкий круг технологических процессов, используемых в практике лабораторного эксперимента. Освещены вопросы техники безопасности при проведении экспериментальных работ
Приведены сведения пo технологии осаждения неметалличетких и металических покрытий на легкие цветные металлы и пластмассы, по контролю гальванических ванн и качества покрытий, оборудованию, механизации и автоматизации гальванического производства, а также по охране труда
Для инженерно-технических работников машиностроительных заводов, научно-исследовательских и проектно-конструкторских организаций, занимающихся разработкой технологии и оборудования для гальванических цехов.
Том 2 посвящен теории интеграла Римана и теории рядов.
Книга известного советского математика Александра Яковлевича Хинчина (1894–1959) посвящена изложению ряда принципиальных вопросов математического анализа, которым в курсах высшей математики зачастую уделяется недостаточно внимания. Автор ставит своей задачей дать общий, но как можно более доступный и запоминающийся очерк основных идей, понятий и методов математического анализа.
Эта книга написана для инженеров и экономистов, учителей, преподавателей вузов и студентов-математиков; для всех тех, кто изучал математический анализ и знаком с его технической стороной, но хотел бы вникнуть в принципиальные вопросы и осознать смысл основных понятий и идей математического анализа.
Том 3 посвящен кратным, криволинейным и поверхностным интегралам, интегралу Стилтьеса, рядам и преобразованию Фурье.
Настоящая книга представляет собой монографию, посвященную
суммированию расходящихся рядов. Она содержит обширный исторический обзор вопроса, краткое введение в общую теорию суммирования рядов и подробное исследование ряда конкретных методов суммирования (методов Чезаро, Абеля, Вороного, Эйлера и др.).
Кроме того, здесь рассматриваются —Й приложения теории к задаче перемножения рядов, к исследованию формулы суммирования Эйлера-Маклорена, к аналитическому продолжению функций, к суммированию рядов Фурье и к нахождению значений определенных интегралов.
Книга рассчитана на математиков — научных работников, аспирантов и студентов старших курсов — и требует для своего чтения знания теории функций действительного и комплексного переменного. В некоторые своих разделах она может быть также полезна для тех инженеров, которые встречаются с расходящимися рядами.
Существующие справочники, рассчитанные на инженеров и студентов, не содержат сведений по вариационному исчислению и интегральным уравнениям. Между тем эти разделы высшей математики широко используются в исследовательской работе и вошли уже в число математических дисциплин, изучаемых в ряде технических учебных заведений. Данное справочное руководство имеет своей целью восполнить указанный пробел.
Книга содержит основные сведения из вариационного исчисления и теории интегральных уравнений и их приложений к некоторым вопросам механики и математической физики. Даются также краткие сведения о принципе максимума Л. С. Понтрягина, принципе оптимальности Р. Беллмана и др. Отдельные положения теории поясняются примерами и решениями задач.
Предлагаемое издание содержит ряд дополнений по сравнению с предыдущим: необходимые и достаточные условия экстремума в разрывных задачах с подвижными концами в пространстве, сведения из теории экстремума функционалов в линейных нормированных пространствах, экстремальные свойства собственных значений и собственных функций задачи Шлурма —
Лиувилля и др.
Книга предназначается для инженеров, экономистов, а также для студентов и аспирантов высших технических учебных заведений.
В настоящей книге содержатся асимптотические методы решения линейных обыкновенных дифференциальных уравнений. Изложены основные результаты асимптотической теории обыкновенных линейных дифференциальных уравнений и систем, относящиеся к поведению решений с малыми параметрами при старших производных и к поведению решений при больших значениях аргумента. Рассмотрен ряд важных физических приложений к задачам квантовой механики, распространения волн и др.
Для математиков, физиков, инженеров, а также для студентов и аспирантов университетов и инженерно-физических вузов.